[1] |
Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1972) · Zbl 0543.33001 |

[2] |
Adam, J. A.: A simplified mathematical model of tumor growth. Math. biosci. 81, 229-244 (1986) · Zbl 0601.92007 |

[3] |
Adam, J. A.: A mathematical model of tumor growth. III. comparison with experiment. Math. biosci. 86, 213-227 (1987) · Zbl 0634.92003 |

[4] |
J.A. Adam, On complementary levels of description in applied mathematics: II. Mathematical models in cancer biology, Internat. Jnl. Math. Ed. Sci. Tech., to appear. |

[5] |
Bullough, W. S.; Deol, J. U. R.: The pattern of tumor growth. Symp. soc. Exp. biol. 25, 255-275 (1971) |

[6] |
Burton, A. C.: Rate of growth of solid tumors as a problem of diffusion. Growth 30, 157-176 (1966) |

[7] |
Folkman, J.; Hochberg, M.: Self-regulation of growth in three dimensions. J. exp. Med. 138, 745-753 (1973) |

[8] |
Glass, L.: Instability and mitotic patterns in tissue growth. J. dyn. Syst. meas. Control 95, 324-327 (1973) |

[9] |
Greespan, H. P.: Models for the growth of a solid tumor by diffusion. Stud. appl. Math. 52, 317-340 (1972) · Zbl 0257.92001 |

[10] |
Post, J.; Hoffman, J.: Cell renewal patterns. New england J. Med. 279, 248-258 (1968) |

[11] |
Shymko, R. M.; Glass, L.: Cellular and geometric control of tissue growth and mitotic instability. J. theoret. Biol. 63, 355-374 (1976) |

[12] |
Stakgold, I.: Boundary-value problems in mathematical physics. (1967) · Zbl 0158.04801 |