×

On the Koszul property of toric face rings. (English) Zbl 1396.13014

Summary: Toric face rings are a generalization of the concepts of affine monoid rings and Stanley-Reisner rings. We consider several properties which imply Koszulness for toric face rings over a field \(k\). Generalizing works of Laudal, Sletsjøe and Herzog et al., graded Betti numbers of \(k\) over the toric face rings are computed, and a characterization of Koszul toric face rings is provided. We investigate a conjecture suggested by Römer about the sufficient condition for the Koszul property. The conjecture is inspired by Fröberg’s theorem on the Koszulness of quadratic squarefree monomial ideals. Finally, it is proved that initially Koszul toric face rings are affine monoid rings.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

Software:

Macaulay2

References:

[1] J. Backelin and R. Fröberg, Koszul algebras, Veronese subrings and rings with linear resolution , Rev. Roum. Math. Pures Appl. 30 (1985), 85-97. · Zbl 0583.16017
[2] S. Blum, Initially Koszul algebras , Beitr. Alg. Geom. 41 (2000), 455-467. · Zbl 1050.13500
[3] M. Brun and T. Römer, Subdivision of toric complexes , J. Alg. Comb. 21 (2005), 423-448. · Zbl 1080.14058 · doi:10.1007/s10801-005-3020-2
[4] W. Bruns and A. Conca, Gröbner basis and determinantal ideals , in Commutative algebra, singularities and computer algebra , J. Herzog and V. Vuletescu, eds., NATO Sci. Math. Phys. Chem. 115 , Kluwer, 2003. · Zbl 1052.13010
[5] W. Bruns and J. Gubeladze, Polytopes, rings and K-theory , Springer Mono. Math., Springer (2009). · Zbl 1168.13001
[6] W. Bruns, J. Gubeladze and N.V. Trung, Normal polytopes, triangulations, and Koszul algebras , J. reine angew. Math. 485 (1997), 123-160. · Zbl 0866.20050
[7] W. Bruns and J. Herzog, Cohen-Macaulay rings , Cambr. Stud. Adv. Math. 39 , Cambridge University Press, Cambridge, 1998. · Zbl 0909.13005
[8] W. Bruns, R. Koch and T. Römer, Gröbner bases and Betti numbers of monoidal complexes , Michigan Math. J. 57 (2008), 71-97. · Zbl 1180.13026 · doi:10.1307/mmj/1220879398
[9] A. Conca, M. Rossi and G. Valla, Gröbner flags and Gorenstein algebras , Compos. Math. 129 (2001), 95-121. · Zbl 1030.13005 · doi:10.1023/A:1013160203998
[10] A. Conca, N.V. Trung and G. Valla, Koszul property for points in projective space , Math. Scand. 89 (2001), 201-216. · Zbl 1025.13003
[11] N. Epstein and D.H. Nguyen, Algebra retracts and Stanley-Reisner rings , J. Pure Appl. Algebra 218 (2014), 1665-1682. · Zbl 1308.13033 · doi:10.1016/j.jpaa.2014.01.006
[12] R. Fröberg, Determination of a class of Poincaré series . Math. Scand. 37 (1975), 29-39.
[13] —-, Koszul algebras , in Advances in commutative ring theory , Lect. Notes Pure Appl. Math. 205 , Dekker, New York, 1999.
[14] D. Grayson and M. Stillman, Macaulay\(2\). A software system for research in algebraic geometry ,
http://www.math.uiuc.edu/Macaulay2/
[15] J. Herzog, T. Hibi and H. Ohsugi, Combinatorial pure subrings , Osaka J. Math. 37 (2000), 745-757. · Zbl 1096.13525
[16] J. Herzog, T. Hibi and G. Restuccia, Strongly Koszul algebras , Math. Scand. 86 (2000), 161-178. · Zbl 1061.13008
[17] J. Herzog, V. Reiner and V. Welker, The Koszul property in affine semigroup rings , Pacific J. Math. 186 (1998), 39-65. · Zbl 0937.20041 · doi:10.2140/pjm.1998.186.39
[18] B. Ichim and T. Römer, On toric face rings , J. Pure Appl. Algebra 210 (2007), 249-266. · Zbl 1117.05113 · doi:10.1016/j.jpaa.2006.09.010
[19] O.A. Laudal and A. Sletsjøe, Betti numbers of monoid algebras. Applications to \(2\)-dimensional torus embeddings . Math. Scand. 56 (1985), 145-162. · Zbl 0594.13010
[20] S. Maclane, Homology , Springer, New York, 1975.
[21] D.H. Nguyen, Homological and combinatorial properties of toric face rings , Ph.D. dissertation, Osnabrück, 2012. Available at:
http://
repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2012082110274
.
[22] R. Okazaki and K. Yanagawa, Dualizing complex of a toric face ring , Nagoya Math. J. 196 (2009), 87-116. · Zbl 1183.13035
[23] I. Peeva, V. Reiner and B. Sturmfels, How to shell a monoid , Math. Ann. 310 (1998), 373-393. · Zbl 0893.20048 · doi:10.1007/s002080050152
[24] R.P. Stanley, Generalized \(h\)-vectors, intersection cohomology of toric varieties, and related results , in Commutative algebra and combinatorics , Adv. Stud. Pure Math. 11 (1987), 187-213. · Zbl 0652.52007
[25] —-, Combinatorics and commutative algebra , 2nd ed., Prog. Math. 41 , Birkhäuser, Berlin, 2005. · Zbl 1157.13302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.