zbMATH — the first resource for mathematics

Spatial voting games, relation algebra and RelView. (English) Zbl 1434.91031
Summary: We present a relation-algebraic approach to spatial voting games. We give relation-algebraic specifications of some important solution concepts of spatial voting games, such as the uncovered set, the majority core, the Pareto set, the win set, and the loss set. These specifications are relation-algebraic expressions and can be evaluated with the help of the BDD-based tool RelView after a simple translation into the tool’s programming language. To give an impression of the tool’s possibilities, we present some concrete applications.
91B12 Voting theory
03G15 Cylindric and polyadic algebras; relation algebras
68W30 Symbolic computation and algebraic computation
91A43 Games involving graphs
Rath; RelView
Full Text: DOI
[1] Behnke, R.; Berghammer, R.; Hoffmann, T.; Leoniuk, B.; Schneider, P., Applications of the \screlview system, (Berghammer, R.; Lakhnech, Y., Tool Support for System Specification, Development and Verification, Advances in Computing, (1999), Springer), 33-47 · Zbl 0944.68165
[2] Berghammer, R.; Leoniuk, B.; Milanese, U., Implementation of relational algebra using binary decision diagrams, (de Swart, H., Proceedings RelMiCS 2002, Lect. Notes Comput. Sci., vol. 2561, (2002), Springer), 241-257 · Zbl 1027.68036
[3] Berghammer, R.; Hoffmann, T.; Leoniuk, B.; Milanese, U., Prototyping and programming with relations, Electron. Notes Theor. Comput. Sci., 44, 27-50, (2003)
[4] Berghammer, R.; Schmidt, G.; Winter, M., \screlview and \scrath - two systems for dealing with relations, (de Swart, H.; etal., Theory and Applications of Relational Structures as Knowledge Instruments I, Lect. Notes Comput. Sci., vol. 2929, (2003), Springer), 1-16
[5] Berghammer, R.; Rusinowska, A.; de Swart, H., Applying relation algebra and \screlview to coalition formation, Eur. J. Oper. Res., 178, 530-542, (2007) · Zbl 1171.91312
[6] Berghammer, R.; Rusinowska, A.; de Swart, H., An interdisciplinary approach to coalition formation, Eur. J. Oper. Res., 195, 487-496, (2009) · Zbl 1159.91311
[7] Berghammer, R.; Rusinowska, A.; de Swart, H., Applying relation algebra and \screlview to measures in a social network, Eur. J. Oper. Res., 202, 182-195, (2010) · Zbl 1173.91446
[8] Berghammer, R.; Bolus, S.; Rusinowska, A.; de Swart, H., A relation-algebraic approach to simple games, Eur. J. Oper. Res., 220, 636-645, (2011)
[9] Berghammer, R.; Rusinowska, A.; de Swart, H., Computations on simple games using \screlview, (Gerdt, V. P.; etal., Proceedings CASC 2011, Lect. Notes Comput. Sci., vol. 6885, (2011), Springer), 49-60 · Zbl 1232.68187
[10] Berghammer, R.; Rusinowska, A.; de Swart, H., Computing tournament solutions using relation algebra and \screlview, Eur. J. Oper. Res., 226, 636-645, (2013) · Zbl 1292.91060
[11] Bianco, W. T.; Jeliazkov, I.; Sened, I., The uncovered set and the limits of legislative action, Polit. Anal., 12, 256-276, (2004)
[12] (Budge, I.; Robertson, D.; Hearl, D. J., Ideology, Strategy, and Party Change: Spatial Analyses of Post-War Election Programmes in 19 Democracies, (1987), Cambridge University Press)
[13] Calvert, R., Robustness of the multidimensional voting model: candidate motivations, uncertainty, and convergence, Am. J. Polit. Sci., 29, 69-95, (1985)
[14] Cox, G. W., The uncovered set and the core, Am. J. Polit. Sci., 31, 408-422, (1987)
[15] Gloseclose, T.; Snyder, J. M., Estimating party influence in congressional roll-call voting, Am. J. Polit. Sci., 44, 193-211, (2000)
[16] Grofman, B.; Owen, G.; Noviello, N.; Glazer, A., Stability and centrality of legislative choice in the spatial context, Am. Polit. Sci. Rev., 8, 539-553, (1987)
[17] Hartley, R.; Kilgour, M., The geometry of the uncovered set in the three-voter spatial model, Math. Soc. Sci., 14, 175-183, (1987) · Zbl 0637.90005
[18] Jackman, S., Multidimensional analysis of roll call data via Bayesian simulation: identification, estimation, inference, and model checking, Polit. Anal., 9, 227-241, (2001)
[19] McKelvey, R. D., Intransitivities in multidimensional voting models and some implications for agenda control, J. Econ. Theory, 12, 472-482, (1976) · Zbl 0373.90003
[20] McKelvey, R. D., General conditions for global intransitivities in formal voting models, Econometrica, 47, 1085-1112, (1979) · Zbl 0411.90009
[21] McKelvey, R. D., Covering, dominance, and institution free properties of social choice, Am. J. Polit. Sci., 30, 283-314, (1986)
[22] McKelvey, R. D.; Schofield, N., Generalized symmetry conditions at a core, Econometrica, 55, 923-933, (1987) · Zbl 0617.90004
[23] B. Leoniuk, ROBDD-based implementation of relational algebra with applications, Dissertation, Universität Kiel, 2001 (in German).
[24] U. Milanese, On the implementation of a ROBDD-based tool for the manipulation and visualization of relations, Dissertation, Universität Kiel, 2003 (in German).
[25] Miller, N., A new solution set for tournaments and majority voting, Am. J. Polit. Sci., 24, 68-96, (1980)
[26] Miller, N., In search of the uncovered set, Polit. Anal., 15, 21-45, (2007)
[27] Miller, N.; Grofman, B.; Feld, S., The geometry of majority rule, J. Theor. Polit., 1, 379-406, (1989)
[28] Ordeshook, P. C.; Schwartz, T., Agenda and the control of political outcomes, Am. Polit. Sci. Rev., 81, 179-199, (1987)
[29] Poole, K. T., Spatial models of parliamentary voting, (2005), Cambridge University Press
[30] Poole, K. T.; Rosenthal, H., Congress: A political-economic history of roll-call voting, (2000), Oxford University Press
[31] Rusinowska, A.; Berghammer, R.; Ecklund, P.; van der Rijt, J. W.; Roubens, M.; de Swart, H., Social software for coalition formation, (de Swart, H.; etal., Theory and Applications of Relational Structures as Knowledge Instruments II, Lect. Notes Artif. Intelligence, vol. 4342, (2006), Springer), 1-30 · Zbl 1177.91118
[32] Rusinowska, A.; Berghammer, R.; de Swart, H.; Grabisch, M., Social networks: prestige, centrality and influence, (de Swart, H., Proceedings RAMiCS 2011, Lect. Notes Comput. Sci., vol. 6663, (2011), Springer), 21-38 · Zbl 1329.91117
[33] Schmidt, G.; Ströhlein, T., Relations and graphs: discrete mathematics for computer scientists, EATCS Monogr. Theor. Comput. Sci., (1993), Springer · Zbl 0900.68328
[34] Schmidt, G., Relational mathematics, Encycl. Math. Appl., vol. 132, (2010), Cambridge University Press
[35] Schofield, N., Instability of simple dynamic games, Rev. Econ. Stud., 45, 575-594, (1978) · Zbl 0401.90005
[36] Shepsle, K. A.; Weingast, B. R., Uncovered sets and sophisticated voting outcomes with implications for agenda institutions, Am. J. Polit. Sci., 28, 49-74, (1984)
[37] Shepsle, K. A.; Weingast, B. R., Positive theories of congressional institutions, Legis. Stud. Q., 19, 149-181, (1994)
[38] de Swart, H.; Berghammer, R.; Rusinowska, A., Computational social choice using relation algebra and \screlview, (Berghammer, R.; etal., Proceedings RelMiCS/AKA 2009, Lect. Notes Comput. Sci., vol. 5827, (2009), Springer), 13-28 · Zbl 1267.91032
[39] \scRelView homepage
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.