Numerical computation of two-loop box diagrams with masses. (English) Zbl 1296.81117

Summary: A new approach is presented to evaluate multi-loop integrals, which appear in the calculation of cross-sections in high-energy physics. It relies on a fully numerical method and is applicable to a wide class of integrals with various mass configurations. As an example, the computation of two-loop planar and non-planar box diagrams is shown. The results are confirmed by comparisons with other techniques, including the reduction method, and by a consistency check using the dispersion relation.


81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81V15 Weak interaction in quantum theory
65D30 Numerical integration
Full Text: DOI arXiv


[1] van Oldenborgh, G.J.; Vermaseren, J.A.M., New algorithms for one-loop integrals, Z. phys. C, 46, 425, (1990)
[2] Hahn, T., Automatic loop calculations with feynarts, formcalc and looptools, Nucl. phys. proc. suppl., 89, 231, (2000)
[3] C. Bauer, in: Proceedings of Computer Particle Physics, CPP 2001, Tokyo 27-30 November 2001, in (KEK Proceedings 2002-11, Aug 2002 pp. 179-185) [MZ-TH/02-04]. Do Hoang Son, Ph.D. Thesis at the Physics Department, Johannes Gutenberg-Universität Mainz, May 27, 2003.
[4] Bélangér, G.; Boudjema, F.; Fujimoto, J.; Ishikawa, T.; Kaneko, T.; Kato, K.; Shimizu, Y., Automatic calculations in high energy physics and GRACE at one-loop, Phys. rept., 430, 117, (2006)
[5] Giele, W.T.; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, Jhep, 0806, 038, (2008), arXiv:0805.2152 [hep-ph]
[6] G. Bevilacqua, M. Czakon, M.V. Garzelli, A. van Hameren, A. Kardos, C.G. Papadopoulos, R. Pittau, M. Worek, HELAC-NLO.arXiv:1110.1499v1 [hep-ph].
[7] V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni, R. Pittau, Automation of one-loop QCD corrections, arXiv:1103.0621 [hep-ph]. · Zbl 1296.81138
[8] Berger, C.F.; Bern, Z.; Dixon, L.J.; Febres Cordero, F.; Forde, D.; Ita, H.; Kosower, D.A.; Maitre, D., Automated implementation of on-shell methods for one-loop amplitudes, Phys. rev. D, 78, 036003, (2008), arXiv:0803.4180 [hep-ph]
[9] G. Cullen, J.-Ph. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, T. Reiter, M. Rodgers, Golem95C: a library for one-loop integrals with complex masses, arXiv:1101.5595v1 [hep-ph]. · Zbl 1223.81172
[10] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Automated One-Loop Calculations with GoSam, arXiv:1111.2034v1 [hep-ph].
[11] E. de Doncker, Y. Shimizu, J. Fujimoto, F. Yuasa, On a numerical evaluation of loop integrals, in: Talk at LoopFest II, BNL, USA, May 14-16, 2003. http://quark.phy.bnl.gov/loopfest2/program.html.
[12] de Doncker, E.; Shimizu, Y.; Fujimoto, J.; Yuasa, F., Computation of loop integrals using extrapolation, Comput. phys. comm., 159, 145, (2004) · Zbl 1196.81014
[13] de Doncker, E.; Shimizu, Y.; Fujimoto, J.; Yuasa, F.; Kaugars, K.; Cucos, L.; Van Voorst, J., Loop integration results using numerical extrapolation for a non-scalar integral, Nucl. instrum. methods phys. res. A, A 534, 269, (2004)
[14] Doncker, E.de; Li, S.; Shimizu, Y.; Fujimoto, J.; Yuasa, F., (), 165
[15] E. de Doncker, Y. Shimizu, J. Fujimoto, F. Yuasa, Numerical Computation of a Non-Planar Two-Loop Vertex Diagram, in: Talk at LoopFest V, SLAC, USA, June 19-21, 2006. http://www-conf.slac.stanford.edu/loopfestv/proc/proceedings.htm.
[16] F. Yuasa, E. de Doncker, J. Fujimoto, N. Hamaguchi, T. Ishikawa, Y. Shimizu, Precise Numerical Results of IR-vertex and box integration with Extrapolation Method, in: PoS(ACAT)087.
[17] F. Yuasa, T. Ishikawa, J. Fujimoto, N. Hamaguchi, E. de Doncker, Y. Shimizu, Numerical Evaluation of Feynman Integrals by a Direct Computation Method, in: PoS(ACAT08)122.
[18] de Doncker, E.; Fujimoto, J.; Hamaguchi, N.; Ishikawa, T.; Kurihara, Y.; Shimizu, Y.; Yuasa, F., Transformation, reduction and extrapolation techniques for Feynman loop integrals, (), 139
[19] de Doncker, E.; Fujimoto, J.; Hamaguchi, N.; Ishikawa, T.; Kurihara, Y.; Shimizu, Y.; Yuasa, F., Quadpack computation of Feynman loop integrals, J. comput. sci., 3, 3, 102, (2012)
[20] de Doncker, E.; Yuasa, F., Toward automatic regularization for Feynman loop integrals in perturbative quantum field theory, (), http://www.intechopen.com/books/measurements-in-quantum-mechanics (chapter 14)
[21] E. de Doncker, F. Yuasa, Y. Kurihara, Regularization of IR-divergent loop integrals, in: Proceedings of 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, (ACAT 2011), September 5-9, Brunel University, Uxbridge, London, UK, Journal of Physics: Conference Series (JPCS) (2012) (in press).
[22] K. Kato, E. de Doncker, N. Hamaguchi, T. Ishikawa, T. Koike, Y. Kurihara, Y. Shimizu, F. Yuasa, Numerical approach to multi-loop integrals, in: PoS(QFTHEP2011)029.
[23] Oyanagai, Y.; Kaneko, T.; Sasaki, T.; Kawabata, S.; Shimizu, Y., How to calculate one-loop diagrams, (), 369
[24] Fujimoto, J.; Igarashi, M.; Nakazawa, N.; Shimizu, Y.; Tobimatsu, K., Radiative corrections to \(e^+ e^-\) reactions in electroweak theory, Progr. theoret. phys. suppl., 100, 1, (1990)
[25] J. Fujimoto, Y. Shimizu, K. Kato, Y. Oyanagi, Numerical Approach to One-loop Integrals, in: Proceedings of Computing in High Energy Physics’91, Universal Academy Press, Inc., Tokyo, Japan, 1991, p. 407.
[26] Fujimoto, J.; Shimizu, Y.; Kato, K.; Oyanagi, Y., Numerical approach to one-loop integrals, Prog. theor. phys., 87, 1233, (1992)
[27] Kreimer, D., Phys. lett. B, 273, 277, (1991)
[28] Fujimoto, J.; Shimizu, Y.; Kato, K.; Oyanagi, Y., Numerical approach to loop integrals, (), 625
[29] J. Fujimoto, Y. Shimizu, K. Kato, Y. Oyanagi, Numerical Approach to Two-loop Integrals, in: Proceedings of VIIth Workshop on High Energy Physics and Quantum Field Theory, Sotchi, Russia, Oct 7-14, 1992.
[30] Fujimoto, J.; Shimizu, Y.; Kato, K.; Kaneko, T., Numerical approach to two-loop three point functions with masses, Int. J. mod. phys. C, 6, 525, (1995)
[31] Tarasov, O.V., An algorithm for the small momentum expansion of Feynman diagrams, (), p. 161
[32] Bauberger, S.; Bohm, M., Simple one-dimensional integral representations for two-loop self-energies: the master diagram, Nucl. phys. B, 445, 25, (1995)
[33] Passarino, G.; Uccirati, S., Algebraic-numerical evaluation of Feynman diagrams: two-loop self-energies, Nucl. phys. B, 629, 97, (2002) · Zbl 1039.81539
[34] Ferroglia, A.; Passera, M.; Passarino, G.; Uccirati, S., Two-loop vertices in quantum field theory: infrared convergent scalar configurations, Nucl. phys. B, 680, 199, (2004) · Zbl 1042.81060
[35] Kurihara, Y.; Kaneko, T., Numerical contour integration for loop integrals, Comput. phys. comm., 174, 530, (2006) · Zbl 1196.81066
[36] C. Anastasiou, S. Beerli, A. Daleo, Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP 0705:071,2007, arXiv:hep-ph/0703282v2.
[37] Gong, W.; Nagy, Z.; Soper, D.E., Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. rev. D, 79, 033005, (2009)
[38] T. Ueda, J. Fujimoto, New implementation of the sector decomposition in FORM, in: PoS(ACAT08)120 (Private communication).
[39] S. Becker, D. Goetz, C. Reuschle, C. Schwan, S. Weinzierl, Multiparton NLO corrections by numerical methods, arXiv:1112.3521v1 [hep-ph].
[40] Piessens, R.; de Doncker, E.; Ubelhuber, C.W.; Kahaner, D.K., ()
[41] Li, S.; de Doncker, E.; Kaugars, K., (), 123
[42] Shanks, D., Non-linear transformations of divergent and slowly convergent sequences, J. math. phys., 34, 1, (1955) · Zbl 0067.28602
[43] Wynn, P.; Wynn, P., On the convergence and stability of the epsilon algorithm, Mathematical tables aids to computing, SIAM J. numer. anal., 3, 91, (1966) · Zbl 0299.65003
[44] E. de Doncker, Parallel iterated multivariate integration, in: Talk at the International Conference on Computational and Applied Mathematics, ICIAM, Vancouver, Canada July 18-22, 2011.
[45] E. de Doncker, F. Yuasa, Parallel computation of Feynman loop integrals, in: Proceedings of Conference on Computational Physics, CCP 2011, October 30-November 3, Oakridge National Laboratory (ORNL), Gatlinburg, Tenessee, Journal of Physics: Conference Series (JPCS) (2012) (in press).
[46] Laporta, S., High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. mod. phys. A, 15, 5087, (2000) · Zbl 0973.81082
[47] Kawabata, S., A new version of the multi-dimensional integration and event generation package BASES/SPRING, Comput. phys. comm., 88, 309, (1995) · Zbl 0888.65019
[48] Fujimoto, J.; Hamaguchi, N.; Ishikawa, T.; Kaneko, T.; Morita, H.; Perret-Gallix, D.; Tokura, A.; Shimizu, Y., Numerical precision control and GRACE, Nucl. instrum. methods, A559, 269, (2006)
[49] Fujiwara, H.
[50] Tiktopoulos, G., High-energy behavior of Feynman amplitudes, Phys. rev., 131, 480, (1963) · Zbl 0129.43002
[51] Eden, R.J.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C., The analytic S-matrix, (1966), Cambridge University Press Cambridge · Zbl 0139.46204
[52] Nakanishi, N., Graph theory and Feynman integrals, (1971), Gordon and Breach New York · Zbl 0212.29203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.