# zbMATH — the first resource for mathematics

New omega results in a weighted divisor problem. (English) Zbl 0635.10037
In the paper the weighted divisor sum $$D(a,b;x)=\sum_{m^an^b\leq x}1$$, where $$a,b$$ are integers with $$1\leq a<b$$, is considered. The reviewer [J. Reine Angew. Math. 235, 150–174 (1969; Zbl 0172.05702)] proved that
$\Delta (a,b;x)=D(a,b;x)-\zeta (b/a)x^{1/a}-\zeta (a/b)x^{1/b}=\Omega (x^{(a+b)})$
and A. Schierwagen [Math. Nachr. 72, 151–168 (1976; Zbl 0285.10030); Publ. Math. 25, 41–46 (1978; Zbl 0392.10039)] gave an improvement of the omega result by applying the methods of G. H. Hardy and E. Landau. The author now proves new omega results.
Schierwagen’s $$\Omega_{+}$$-result is improved in all cases by a logarithm factor. Here the author uses his method developed for Dirichlet’s divisor problem $$a=b=1$$ [Invent. Math. 63, 181–186 (1981; Zbl 0458.10031)]. For the proof of the new $$\Omega_{-}$$-result the method of I. Kátai and K. Corrádi [Magyar Tud. Akad., Mat. Fiz. Tud. Oszt. Közl. 17, 89–97 (1967; Zbl 0163.04103)] is used. Since in the problem under consideration there is no functional equation for the generating function an identity for $$D(a,b;x)$$, due to the reviewer, is applied in the proofs.

##### MSC:
 11N37 Asymptotic results on arithmetic functions
Full Text:
##### References:
 [1] Gangadharan, K.S., Two classical lattice point problems, (), 699-721 · Zbl 0100.03901 [2] Hafner, J.L., New omega theorems for two classical lattice point problems, Invent. math., 63, 181-186, (1981) · Zbl 0458.10031 [3] Hardy, G.H.; Ramanujan, S., The normal number of prime factors of a number n,, Quart. J. math., 48, 76-92, (1920) · JFM 46.0262.03 [4] Joris, H., Ω-Sätze für zwei arithmetische funktionen, Comment. math. helv., 47, 220-248, (1972) · Zbl 0248.12009 [5] Kátai, I.; Corrádi, K., Egy megiegyzés K.S. gangadharan, “two classical lattice point problems” cimu dolgozata hoz, MTA III ostaly Közlemenyei, 17, 89-97, (1967) [6] Krätzel, E., Ein teilerproblem, J. reine angew. math., 235, 150-174, (1969) · Zbl 0172.05702 [7] Rankin, R.A., Van der Corput’s method and the theory of exponent pairs, Quart. J. math. Oxford (2), 6, 147-153, (1955) · Zbl 0065.27802 [8] Redmond, D., Omega theorems for a class of Dirichlet series, Rocky mountain J. math., 9, 733-748, (1979) · Zbl 0388.10027 [9] Richert, H.-E., Über die anzahl abelscher gruppen gegebener ordnung (I), Math. Z., 56, 21-32, (1952) · Zbl 0046.25002 [10] Schierwagen, A., Über ein teilerproblem, Math. nachr., 72, 151-168, (1976) · Zbl 0285.10030 [11] Schierwagen, A., Bemerkungen zu einen teilerproblem, Publ. math. debrecen, 25, 41-46, (1978) · Zbl 0392.10039 [12] Schmidt, P.G., Abschätzungen bei unsymmetrischen gitterpunktproblem, Dissertation, (1964), Göttingen
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.