×

An algorithm for biparabolic spline. (English) Zbl 0635.65006

Some kinds of algorithms for computing the parameters of a two- dimensional parabolic interpolation spline on a rectangle are studied. With given data and suitable boundary conditions there exists a unique interpolation biparabolic spline which can be constructed in terms of concentrated or dispersed local parameters using corresponding second derivative or first derivative representations.
Two-dimensional computation is split into a sequence of one-dimensional parabolic spline algorithms in which one has to solve systems of linear equations with tridiagonal (or cyclic tridiagonal in the periodic case) matrices. After the values of the parameters are obtained one can calculate the spline via the conventional piecewise-polynomial representation or a special FV-algorithm suggested by the author.
Reviewer: V.V.Kobkov

MSC:

65D07 Numerical computation using splines
65D05 Numerical interpolation
41A15 Spline approximation
41A63 Multidimensional problems
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] C. de Boor: A practical guide to splines. Springer, N. Y. 1978. · Zbl 0406.41003
[2] J. Kobza: On algorithms for parabolic splines. Acta UPO, FRN, Vol. 88, Math. XXVI · Zbl 0693.65005
[3] J. Kobza: Evaluation and mapping of parabolic interpolating spline. (Czech). Knižnica algoritmov, IX. diel, str. 51-58; JSMF Bratislava 1987.
[4] В. Л. Макаров В. В. Хлобыстов: Сплайн-аппроксимация функций. Москва, Наука 1983. · Zbl 1229.47001
[5] С. Б. Стечкин И. Н. Субботин: Сплайны в вычислительной математике. Москва, Наука 1976. · Zbl 1226.05083
[6] M. Schultz: Spline analysis. Prentice-Hall, N. J. 1973. · Zbl 0333.41009
[7] Ю. С. Завялое Б. И. Квасов В. Л. Мирошниченко: Методы сплайн-функций. Москва, Наука 1980. · Zbl 1229.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.