×

zbMATH — the first resource for mathematics

TACO: a toolkit for AMPL control optimization. (English) Zbl 1302.49043
Summary: We describe a set of extensions to the AMPL modeling language to conveniently model mixed-integer optimal control problems for ODE or DAE dynamic processes. These extensions are realized as AMPL user functions and suffixes and do not require intrusive changes to the AMPL language standard or implementation itself. We describe and provide TACO, a toolkit for AMPL control optimization that reads AMPL\urlstub.nl files and detects the structure of the optimal control problem. This toolkit is designed to facilitate the coupling of existing optimal control software packages to AMPL. We discuss requirements, capabilities, and the current implementation. Using the example of the multiple shooting code for optimal control MUSCOD-II, a direct and simultaneous method for DAE-constrained optimal control, we demonstrate how the problem information provided by the TACO toolkit is interfaced to the solver. In addition, we show how the MS-MINTOC algorithm for mixed-integer optimal control can be used to efficiently solve mixed-integer optimal control problems modeled in AMPL. We use the AMPL extensions to model three control problem examples and we discuss how those extensions affect the representation of optimal control problems. Solutions to these problems are obtained by using MUSCOD-II and MS-MINTOC inside the AMPL environment. A collection of further AMPL control models is provided on the web site http://mintoc.de. MUSCOD-II and MS-MINTOC have been made available on the NEOS server for optimization, using the TACO toolkit to enable input of AMPL models.

MSC:
49M37 Numerical methods based on nonlinear programming
68N15 Theory of programming languages
90C11 Mixed integer programming
93A30 Mathematical modelling of systems (MSC2010)
65L80 Numerical methods for differential-algebraic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abhishek, K., Leyffer, S., Linderoth, T.: FilMINT: an outer approximation-based solver for mixed-integer nonlinear programs. INFORMS J. Comput. 22(4), 555–567 (2010). http://joc.journal.informs.org/content/22/4/555.abstract · Zbl 1243.90142
[2] Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. Ser. A 114, 69–99 (2008). http://www.mathematik.uni-wuerzburg.de/\(\sim\)kanzow/paper/VanishCP.pdf · Zbl 1151.90046
[3] Åkesson, J., Årzén, K., Gräfvert, M., Bergdahl, T., Tummescheit. H.: Modeling and optimization with Optimica and JModelica.org–languages and tools for solving large-scale dynamic optimization problems. Comput. Chem. Eng. 34(11), 1737–1749 (2008). http://www.sciencedirect.com/science/article/pii/S009813540900283X
[4] Albersmeyer, J.: Adjoint based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2010). http://www.ub.uni-heidelberg.de/archiv/11651 · Zbl 1210.65003
[5] Andreani, R., Birgin, E., Martinez, J., Schuverdt, M.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007). http://www.optimization-online.org/DB_FILE/2005/03/1085.pdf · Zbl 1151.49027
[6] Andreani, R., Birgin, E., Martinez, J., Schuverdt, M.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math Program 111, 5–32 (2008). http://www.ime.usp.br/\(\sim\)egbirgin/publications/abms.pdf · Zbl 1163.90041
[7] Barton, P., Pantelides, C.: gPROMS–a combined discrete/continuous modelling environment for chemical processing systems. Simul. Ser. 25, 25–34 (1993)
[8] Bauer, I., Bock, H., Körkel, S., Schlöder, J.: Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes. In: Scientific Computing in Chemical Engineering II, pp 282–289. Springer, Berlin (1999). http://hgs.iwr.uni-heidelberg.de/expdesign/people/skoerkel/publications/?name=scce99-bauer.ps.gz&type=application/postscript
[9] Belotti, P.: Couenne: a user’s manual. Tech. rep., Lehigh University (2009). http://www.coin-or.org/Couenne/couenne-user-manual.pdf
[10] Betts, J., Eldersveld, S., Huffman, W.: Sparse nonlinear programming test problems (Release 1.0). Tech. rep. BCSTECH-93-074, Boeing Computer Services (1993)
[11] Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp 242–247. Pergamon Press, Budapest (1984). http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf
[12] Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim 5(2), 186–204 (2008). http://www.sciencedirect.com/science/article/pii/S1572528607000448 · Zbl 1151.90028
[13] Box, G., Hunter, W., MacGregor, J., Erjavec, J.: Some problems associated with the analysis of multiresponse data. Technometrics 15, 33–51 (1973). http://www.jstor.org/stable/1266823 · Zbl 0275.62060
[14] Bryson, A., Ho, Y.: Applied optimal control: optimization, estimation, and control. Wiley, Hoboken (1975)
[15] Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999) · Zbl 0957.65057 · doi:10.1137/S1052623497325107
[16] Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89, 149–185 (2000). http://www.ece.northwestern.edu/\(\sim\)nocedal/PSfiles/nitro.ps.gz · Zbl 1033.90152
[17] Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: an integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-scale nonlinear optimization, pp 35–59. Springer, Berlin (2006). http://www.ziena.com/papers/integratedpackage.pdf · Zbl 1108.90004
[18] Cesari, L.: Optimization–theory and applications. Springer, Berlin (1983)
[19] Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer, Heidelberg (1992) · Zbl 0761.90087
[20] Cuthrell, J., Biegler, L.: On the optimization of differential-algebraic process systems. AIChE 33, 1257–1270 (1987). http://onlinelibrary.wiley.com/doi/10.1002/aic.690330804/abstract
[21] Diehl, M.: Real-time optimization for large scale nonlinear processes. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2001). http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2001/1659/
[22] Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II Users’ Manual. IWR Preprint 2001–25, Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany (2001). http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/muscod_manual.pdf
[23] Diehl, M., Bock, H., Kostina, E.: An approximation technique for robust nonlinear optimization. Math. Program. 107, 213–230 (2006). https://lirias.kuleuven.be/bitstream/123456789/70656/1/06-226.pdf · Zbl 1134.90039
[24] Dolan, E., Moré, J., Munson, T.: Benchmarking Optimization Software with COPS 3.0. Tech. rep. ANL/MCS-TM-273, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA (2004). http://www.mcs.anl.gov/\(\sim\)more/cops/cops3.pdf
[25] Elmqvist, H., Brück, D.: Dymola–dynamic modeling language. User’s manual, Dynasim AB (2001)
[26] Fletcher, R., Leyffer, S.: User manual for filterSQP. Tech. rep., University of Dundee (1999). http://www.mcs.anl.gov/\(\sim\)leyffer/papers/SQP_manual.pdf
[27] Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis, J., Meyer, C., Schweiger, C.: Handbook of Test Problems for Local and Global Optimization. Kluwer, Dordrecht (1999) · Zbl 0943.90001
[28] Fourer, B., Ferris, M.C., Gay, D.M.: Expressing complementarity problems and communicating them to solvers. SIAM J. Optim. 9, 991–1009 (1999). http://ftp2.cs.wisc.edu/math-prog/tech-reports/98-02.pdf · Zbl 0997.90087
[29] Fourer, R., Gay, D., Kernighan, B.: A modeling language for mathematical programming. Manage. Sci. 36, 519–554 (1990). http://www.jstor.org/pss/2632268 · Zbl 0701.90062
[30] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modelling Language for Mathematical Programming, 2nd edn. Books/Cole-Thomson Learning (2003)
[31] Gay, D.M.: Hooking your solver to AMPL. Tech. rep., Bell Laboratories, Murray Hill, NJ (1993; revised 1994, 1997). http://www.ampl.com/REFS/download.html#pdf
[32] Gill, P., Murray, W., Saunders, M., Wright, M.: User’s guide for NPSOL Version 5.0: a Fortran package for nonlinear programming. Report SOL 86–1, Dept. of Mathematics, University of California, San Diego (1998) http://cam.ucsd.edu/\(\sim\)peg/papers/npdoc.pdf
[33] Gill, P., Murray, W., Saunders, M.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002). http://www.stanford.edu/group/SOL/papers/SNOPT-SIGEST.pdf · Zbl 1027.90111
[34] Gropp, W., Moré, J.: Optimization environments and the NEOS Server. In: Buhmann M, Iserles A (eds.) Approximation theory and optimization, pp 167–182. Cambridge University Press, Cambridge (1997). ftp://ftp.mcs.anl.gov/pub/tech_reports/reports/P654.ps.Z · Zbl 1031.65075
[35] Hatz, K.: Estimating parameters in optimal control problems. Ruprecht-Karls-Universität Heidelberg, Diploma thesis (2008)
[36] Kameswaran, S., Biegler, L.: Advantages of nonlinear-programming-based methodologies for inequality path-constrained optimal control problems - a numerical study. SIAM J. Sci. Comput. 30, 957–981 (2008). http://numero.cheme.cmu.edu/uploads/paper12.pdf · Zbl 1157.49038
[37] Kirches, C.: Fast numerical methods for mixed-integer nonlinear model-predictive control. PhD thesis, Ruprecht-Karls-Universität Heidelberg (2010). http://www.ub.uni-heidelberg.de/archiv/11636/ · Zbl 1312.65101
[38] Kočvara, M., Stingl, M.: PENNON–a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003). http://web.mat.bham.ac.uk/kocvara/pennon/paper_OMS.pdf · Zbl 1037.90003
[39] Kočvara, M., Stingl, M.: PENNON User’s Guide (Version 0.9). PENOPT (2008). http://www.penopt.com/doc/pennon0_9.pdf .
[40] Kühl, P., Milewska. A., Diehl, M., Molga, E., Bock, H.: NMPC for runaway-safe fed-batch reactors. In: Proc. Int. Workshop on Assessment and Future Directions of NMPC, pp. 467–474 (2005). http://www.kuleuven.be/optec/OLD/research/subgroups/fastMPC/publications/Kuehl2005.pdf · Zbl 1223.93092
[41] Leineweber, D.: Analyse und Restrukturierung eines Verfahrens zur direkten Lösung von Optimal-Steuerungsproblemen. Ruprecht-Karls-Universität Heidelberg, Diploma thesis (1995)
[42] Leineweber, D.: Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf (1999)
[43] Leineweber, D., Bauer, I., Schäfer, A., Bock, H., Schlöder, J.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II). Comput. Chem. Eng. 27, 157–174 (2003). http://www.iwr.uni-heidelberg.de/groups/agbock/USER_PAGES/LEINEWEBER_DANIEL/WWW/mc2_part1.pdf , http://www.iwr.uni-heidelberg.de/groups/agbock/USER_PAGES/LEINEWEBER_DANIEL/WWW/mc2_part2.pdf
[44] Leyffer, S.: User manual for MINLP. University of Dundee (1998)
[45] Logsdon, J., Biegler, L.: Decomposition strategies for large-scale dynamic optimization problems. Chem. Eng. Sci. 47(4), 851–864 (1992). http://www.sciencedirect.com/science/article/pii/000925099280272E
[46] Maria, G.: An adaptive strategy for solving kinetic model concomitant estimation-reduction problems. Can. J. Chem. Eng. 67, 825 (1989). http://onlinelibrary.wiley.com/doi/10.1002/cjce.5450670514/abstract
[47] Mattsson, S., Elmqvist, H., Broenink, J.: Modelica: an international effort to design the next generation modelling language. J. A Benelux Q. J. Autom. Control 38(3), 16–19 (1997), special issue on Computer Aided Control System Design, CACSD (1998). https://www.modelica.org/publications/papers/CACSD97Modelica.pdf
[48] Milewska, A.: Modelling of batch and semibatch chemical reactors–safety aspects. PhD thesis, Warsaw University of Technology (2006)
[49] Moessner-Beigel, M.: Optimale Steuerung für Industrieroboter unter Berücksichtigung der getriebebedingten Elastizität. Diploma thesis Ruprecht-Karls-Universität Heidelberg (1995)
[50] Murtagh, B., Saunders, M.: MINOS 5.4 user’s guide. Report SOL 83–20R, Department of Operations Research, Stanford University (1993)
[51] Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006) · Zbl 1104.65059
[52] Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput. Chem. Eng. 30, 1553–1559 (2006). http://www.sciencedirect.com/science/article/pii/S0098135406001487
[53] Plitt, K.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen. Diploma thesis Rheinische Friedrich-Wilhelms-Universität Bonn (1981)
[54] Potschka, A., Bock, H., Schlöder, J.: A minima tracking variant of semi-infinite programming for the treatment of path constraints within direct solution of optimal control problems. Optim. Methods Softw. 24(2), 237–252 (2009). http://www.tandfonline.com/doi/abs/10.1080/10556780902753098 · Zbl 1286.49005
[55] Rothschild, B., Sharov, A., Kearsley, A., Bondarenko, A.: Estimating growth and mortality in stage-structured populations. J. Plankton Res. 19, 1913–1928 (1997). http://plankt.oxfordjournals.org/content/19/12/1913.full.pdf
[56] Rutquist, P., Edvall, M.: PROPT–Matlab Optimal Control Software. User’s manual, TOMLAB Optimization (2010). http://tomopt.com/docs/TOMLAB_PROPT.pdf
[57] Sager, S.: Numerical methods for mixed-integer optimal control problems. Der andere Verlag, Tönning, Lübeck, Marburg (2005). http://mathopt.uni-hd.de/PUBLICATIONS/Sager2005.pdf
[58] Sager, S.: A benchmark library of mixed-integer optimal control problems. In: Proceedings MINLP09 (2011). http://mathopt.uni-hd.de/PUBLICATIONS/Sager2011b.pdf · Zbl 1242.90309
[59] Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal control. Math. Program. A (2011). doi: 10.1007/s10107-010-0405-3 . http://mathopt.uni-hd.de/PUBLICATIONS/Sager2011.pdf · Zbl 1259.90077
[60] von Stryk, O.: User’s guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems. Tech. rep., Technische Universität München, Germany (1999)
[61] Tjoa, I.B., Biegler, L.: Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equations systems. Ind. Eng. Chem. Res. 30, 376–385 (1991). http://pubs.acs.org/doi/abs/10.1021/ie00050a015
[62] Vanderbei, R., Shanno, D.: An interior point algorithm for nonconvex nonlinear programming. COAP 13, 231–252 (1999). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.4065&rep=rep1&type=pdf · Zbl 1040.90564
[63] Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for Large-Scale Nonlinear Programming. Math. Program. 106(1), 25–57 (2006). http://www.springerlink.com/content/r31116mp70171220/ · Zbl 1134.90542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.