Numerical bifurcation theory for high-dimensional neural models. (English) Zbl 1333.92018

Summary: Numerical bifurcation theory involves finding and then following certain types of solutions of differential equations as parameters are varied, and determining whether they undergo any bifurcations (qualitative changes in behaviour). The primary technique for doing this is numerical continuation, where the solution of interest satisfies a parametrised set of algebraic equations, and branches of solutions are followed as the parameter is varied. An effective way to do this is with pseudo-arclength continuation. We give an introduction to pseudo-arclength continuation and then demonstrate its use in investigating the behaviour of a number of models from the field of computational neuroscience. The models we consider are high dimensional, as they result from the discretisation of neural field models – nonlocal differential equations used to model macroscopic pattern formation in the cortex. We consider both stationary and moving patterns in one spatial dimension, and then translating patterns in two spatial dimensions. A variety of results from the literature are discussed, and a number of extensions of the technique are given.


92C20 Neural biology
65P30 Numerical bifurcation problems
Full Text: DOI


[1] Bressloff PC: Waves in Neural Media. Springer, Berlin; 2014. · Zbl 1296.92005
[2] Ermentrout, GB; Terman, DH, 64, (2010), Berlin · Zbl 1320.92002
[3] Seydel, R, 5, (2010), Berlin · Zbl 1195.34004
[4] Govaerts WJ: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia; 2000. · Zbl 0935.37054
[5] Krauskopf B, Osinga HM, Galán-Vioque J: Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems. Understanding Complex Systems. Springer, Berlin; 2007.
[6] Allgower EL, Georg K: Introduction to Numerical Continuation Methods. SIAM, Philadelphia; 2003. · Zbl 1036.65047
[7] Beyn, W-J; Champneys, A; Doedel, E; Govaerts, W; Kuznetsov, YA; Sandstede, B; Fiedler, B (ed.), Numerical continuation, and computation of normal forms, 149-219, (2002), Amsterdam · Zbl 1034.37048
[8] Salinger AG, Bou-Rabee NM, Pawlowski RP, Wilkes ED, Burroughs EA, Lehoucq RB, Romero LA: Loca 1.0 library of continuation algorithms: theory and implementation manual. Sandia National Laboratories, SAND2002-0396; 2002. · Zbl 1203.37034
[9] Doedel EJ, Champneys AR, Fairgrieve TF, Kuznetsov YA, Sandstede B, Wang X: “Auto97,” Continuation and bifurcation software for ordinary differential equations; 1998. · Zbl 0913.65002
[10] Dhooge, A; Govaerts, W; Kuznetsov, YA, Matcont: a Matlab package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw, 29, 141-164, (2003) · Zbl 1070.65574
[11] Engelborghs, K; Luzyanina, T; Roose, D, Numerical bifurcation analysis of delay differential equations using dde-biftool, ACM Trans. Math. Softw, 28, 1-21, (2002) · Zbl 1070.65556
[12] Ermentrout, B, 14, (2002), Philadelphia · Zbl 1003.68738
[13] Uecker H,Wetzel D, Rademacher JDM: pde2path - AMatlab package for continuation and bifurcation in 2D elliptic systems. arXiv:1208.3112; 2012. · Zbl 1313.65311
[14] Dankowicz H, Schilder F: Recipes for Continuation. SIAM, Philadelphia; 2013. · Zbl 1277.65037
[15] Wilson, HR; Cowan, JD, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 55-80, (1973) · Zbl 0281.92003
[16] Amari, S, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern, 27, 77-87, (1977) · Zbl 0367.92005
[17] Doedel, E; Keller, HB; Kernevez, JP, Numerical analysis and control of bifurcation problems (i): bifurcation in finite dimensions, Int. J. Bifurc. Chaos, 1, 493-520, (1991) · Zbl 0876.65032
[18] Laing, C; Troy, W; Gutkin, B; Ermentrout, G, Multiple bumps in a neuronal model of working memory, SIAM J. Appl. Math, 63, 62, (2002) · Zbl 1017.45006
[19] Laing, C; Troy, W, PDE methods for nonlocal models, SIAM J. Appl. Dyn. Syst, 2, 487-516, (2003) · Zbl 1088.34011
[20] Pinto, DJ; Ermentrout, GB, Spatially structured activity in synaptically coupled neuronal networks: II. lateral inhibition and standing pulses, SIAM J. Appl. Math, 62, 226-243, (2001) · Zbl 1070.92506
[21] Bressloff P: Spatiotemporal dynamics of continuum neural fields.J. Phys. A, Math. Theor. 2012.,45(3): Article ID 033001 · Zbl 1312.92015
[22] Coombes, S, Waves, bumps, and patterns in neural field theories, Biol. Cybern, 93, 91-108, (2005) · Zbl 1116.92012
[23] Coombes S, beim Graben P, Potthast R, Wright J (Eds): Neural Fields: Theory and Applications. Springer, Berlin; 2014. · Zbl 1291.92004
[24] Wimmer, K; Nykamp, DQ; Constantinidis, C; Compte, A, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory, Nat. Neurosci, 17, 431-439, (2014)
[25] Beyn, W-J; Thümmler, V, Freezing solutions of equivariant evolution equations, SIAM J. Appl. Dyn. Syst, 3, 85-116, (2004) · Zbl 1061.65078
[26] Elvin AJ: Pattern formation in a neural field model. PhD thesis. Auckland, New Zealand, Massey University; 2008
[27] Laing, C; Longtin, A, Noise-induced stabilization of bumps in systems with long-range spatial coupling, Phys. D, Nonlinear Phenom, 160, 149-172, (2001) · Zbl 0997.92002
[28] Ermentrout, B; Folias, SE; Kilpatrick, ZP; Coombes, S (ed.); beim Graben, P (ed.); Potthast, R (ed.); Wright, J (ed.), Spatiotemporal pattern formation in neural fields with linear adaptation, (2014), Berlin
[29] Kilpatrick ZP: Coupling layers regularizes wave propagation in stochastic neural fields.Phys. Rev. E 2014.,89(2): Article ID 022706 · Zbl 1245.45008
[30] Trefethen, L, 10, (2000), Philadelphia · Zbl 0953.68643
[31] Rowley, CW; Kevrekidis, IG; Marsden, JE; Lust, K, Reduction and reconstruction for self-similar dynamical systems, Nonlinearity, 16, 1257, (2003) · Zbl 1066.37036
[32] Cliffe, KA; Spence, A; Tavener, SJ, The numerical analysis of bifurcation problems with application to fluid mechanics, Acta Numer, 2000, 39-131, (2000) · Zbl 1005.65138
[33] Dijkstra, HA; Wubs, FW; Cliffe, KA; Doedel, E; Dragomirescu, IF; Eckhardt, B; Gelfgat, AY; Hazel, A; Lucarini, V; Salinger, AG; Phipps, ET; Sanchez-Umbria, J; Schuttelaars, H; Tuckerman, LS; Thiele, U, Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys, 15, 1-45, (2014) · Zbl 1373.76026
[34] Bär M, Bangia AK, Kevrekidis IG: Bifurcation and stability analysis of rotating chemical spirals in circular domains: boundary-induced meandering and stabilization.Phys. Rev. E 2003.,67(5): Article ID 056126 · Zbl 1373.76026
[35] Schneider, TM; Gibson, JF; Burke, J, Snakes and ladders: localized solutions of plane Couette flow, No. 104, (2010)
[36] Lord, G; Thümmler, V, Computing stochastic traveling waves, SIAM J. Sci. Comput, 34, b24-b43, (2012) · Zbl 1236.35212
[37] Coombes, S; Schmidt, H; Laing, C; Svanstedt, N; Wyller, J, Waves in random neural media, Discrete Contin. Dyn. Syst, 32, 2951-2970, (2012) · Zbl 1245.45008
[38] Coombes, S; Owen, MR, Evans functions for integral neural field equations with heaviside firing rate function, SIAM J. Appl. Dyn. Syst, 3, 574-600, (2004) · Zbl 1067.92019
[39] Pinto, D; Ermentrout, G, Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses, SIAM J. Appl. Math, 62, 206-225, (2001) · Zbl 1001.92021
[40] Curtu, R; Ermentrout, B, Pattern formation in a network of excitatory and inhibitory cells with adaptation, SIAM J. Appl. Dyn. Syst, 3, 191-231, (2004) · Zbl 1090.34038
[41] Quarteroni, A; Sacco, R; Saleri, F, Texts in applied mathematics, (2007), Berlin · Zbl 0913.65002
[42] Saad, Y; Schultz, MH, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput, 7, 856-869, (1986) · Zbl 0599.65018
[43] Rankin, J; Avitabile, D; Baladron, J; Faye, G; Lloyd, D, Continuation of localized coherent structures in nonlocal neural field equations, SIAM J. Sci. Comput, 36, b70-b93, (2014) · Zbl 1312.92015
[44] Bressloff, PC; Kilpatrick, ZP, Two-dimensional bumps in piecewise smooth neural fields with synaptic depression, SIAM J. Appl. Math, 71, 379-408, (2011) · Zbl 1221.92017
[45] Folias, SE; Bressloff, PC, Breathing pulses in an excitatory neural network, SIAM J. Appl. Dyn. Syst, 3, 378-407, (2004) · Zbl 1058.92010
[46] Owen, M; Laing, C; Coombes, S, Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities, New J. Phys, 9, 378, (2007)
[47] Coombes S, Venkov N, Shiau L, Bojak I, Liley D, Laing C: Modeling electrocortical activity through improved local approximations of integral neural field equations.Phys. Rev. E 2007.,76(5): Article ID 051901
[48] Laing, CR, Spiral waves in nonlocal equations, SIAM J. Appl. Dyn. Syst, 4, 588-606, (2005) · Zbl 1090.37056
[49] Huang, X; Troy, WC; Yang, Q; Ma, H; Laing, CR; Schiff, SJ; Wu, J-Y, Spiral waves in disinhibited Mammalian neocortex, J. Neurosci, 24, 9897-9902, (2004)
[50] Kilpatrick, ZP; Bressloff, PC, Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression, J. Comput. Neurosci, 28, 193-209, (2010)
[51] Laing, CR; Coombes, S (ed.); beim Graben, P (ed.); Potthast, R (ed.); Wright, J (ed.), PDE methods for two-dimensional neural fields, (2014), Berlin
[52] Coombes, S; Laing, C, Delays in activity-based neural networks, Philos. Trans. R. Soc., Math. Phys. Eng. Sci, 367, 1117-1129, (2009) · Zbl 1185.92003
[53] Laing, CR; Longtin, A, Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback, Neural Comput, 15, 2779-2822, (2003) · Zbl 1142.92306
[54] Meijer, H; Coombes, S, Travelling waves in models of neural tissue: from localised structures to periodic waves, EPJ Nonlinear Biomed. Phys, 2, 3, (2014)
[55] Meijer, HG; Coombes, S, Travelling waves in a neural field model with refractoriness, J. Math. Biol, 68, 1249-1268, (2014) · Zbl 1345.92044
[56] Faye, G; Faugeras, O, Some theoretical and numerical results for delayed neural field equations, Phys. D, Nonlinear Phenom, 239, 561-578, (2010) · Zbl 1186.92008
[57] Szalai R: Knut: A continuation and bifurcation software for delay-differential equations. [http://gitorious.org/knut/pages/Home]
[58] Guckenheimer, J; Holmes, P, 42, (1983), New York · Zbl 0515.34001
[59] Kuznetsov, YA, 112, (1998), Berlin
[60] Wiggins S: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin; 1990. · Zbl 0701.58001
[61] Elvin, A; Laing, C; McLachlan, R; Roberts, M, Exploiting the Hamiltonian structure of a neural field model, Phys. D, Nonlinear Phenom, 239, 537-546, (2010) · Zbl 1203.37034
[62] Coombes, S; Lord, GJ; Owen, MR, Waves and bumps in neuronal networks with axo-dendritic synaptic interactions, Phys. D, Nonlinear Phenom, 178, 219-241, (2003) · Zbl 1013.92006
[63] Champneys, AR; Kuznetsov, YA; Sandstede, B, A numerical toolbox for homoclinic bifurcation analysis, Int. J. Bifurc. Chaos, 6, 867-887, (1996) · Zbl 0877.65058
[64] Guo, Y; Chow, CC, Existence and stability of standing pulses in neural networks: I. existence, SIAM J. Appl. Dyn. Syst, 4, 217-248, (2005) · Zbl 1109.34002
[65] Blomquist, P; Wyller, J; Einevoll, GT, Localized activity patterns in two-population neuronal networks, Phys. D, Nonlinear Phenom, 206, 180-212, (2005) · Zbl 1071.92002
[66] Coombes, S; Schmidt, H; Avitabile, D; Coombes, S (ed.); beim Graben, P (ed.); Potthast, R (ed.); Wright, J (ed.), Spots: breathing, drifting and scattering in a neural field model, (2014), Berlin · Zbl 1291.92004
[67] Griewank, A; Reddien, G, The calculation of Hopf points by a direct method, IMA J. Numer. Anal, 3, 295-303, (1983) · Zbl 0521.65070
[68] Wasylenko, TM; Cisternas, JE; Laing, CR; Kevrekidis, IG, Bifurcations of lurching waves in a thalamic neuronal network, Biol. Cybern, 103, 447-462, (2010) · Zbl 1403.92047
[69] Shiau L, Laing CR: Periodically forced piecewise-linear adaptive exponential integrate-and-fire neuron.Int. J. Bifurc. Chaos 2013.,23(10): Article ID 1350171 · Zbl 1277.34060
[70] Laing, CR; Coombes, S, Mode locking in a periodically forced “ghostbursting” neuron model, Int. J. Bifurc. Chaos, 15, 1433-1444, (2005) · Zbl 1089.37052
[71] Coombes S, Laing C: Pulsating fronts in periodically modulated neural field models.Phys. Rev. E 2011.,83(1): Article ID 011912
[72] Schmidt, H; Hutt, A; Schimansky-Geier, L, Wave fronts in inhomogeneous neural field models, Phys. D, Nonlinear Phenom, 238, 1101-1112, (2009) · Zbl 1167.37389
[73] Doedel, E; Keller, HB; Kernevez, JP, Numerical analysis and control of bifurcation problems (ii): bifurcation in infinite dimensions, Int. J. Bifurc. Chaos, 1, 745-772, (1991) · Zbl 0876.65060
[74] Hastings, SP, Single and multiple pulse waves for the Fitzhugh-Nagumo, SIAM J. Appl. Math, 42, 247-260, (1982) · Zbl 0503.92009
[75] Sánchez, J; Net, M, On the multiple shooting continuation of periodic orbits by Newton-Krylov methods, Int. J. Bifurc. Chaos, 20, 43-61, (2010) · Zbl 1183.34056
[76] Tuckerman, LS; Barkley, D; Doedel, E (ed.); Tuckerman, LS (ed.), Bifurcation analysis for timesteppers, 453-466, (2000), New York · Zbl 0961.35015
[77] Kevrekidis, IG; Samaey, G, Equation-free multiscale computation: algorithms and applications, Annu. Rev. Phys. Chem, 60, 321-344, (2009)
[78] Kevrekidis, Y; Samaey, G, Equation-free modeling, Scholarpedia, 5, 4847, (2010) · Zbl 1238.35149
[79] Theodoropoulos, C; Qian, Y-H; Kevrekidis, IG, “coarse” stability and bifurcation analysis using time-steppers: a reaction-diffusion example, Proc. Natl. Acad. Sci. USA, 97, 9840-9843, (2000) · Zbl 1064.65121
[80] Laing, CR, On the application of “equation-free modelling” to neural systems, J. Comput. Neurosci, 20, 5-23, (2006) · Zbl 1119.92014
[81] Laing, C; Frewen, T; Kevrekidis, I, Coarse-grained dynamics of an activity bump in a neural field model, Nonlinearity, 20, 2127, (2007) · Zbl 1125.60061
[82] Laing, CR; Frewen, T; Kevrekidis, IG, Reduced models for binocular rivalry, J. Comput. Neurosci, 28, 459-476, (2010)
[83] Zou Y, Fonoberov VA, Fonoberova M, Mezic I, Kevrekidis IG: Model reduction for agent-based social simulation: coarse-graining a civil violence model.Phys. Rev. E 2012.,85(6): Article ID 066106 · Zbl 1013.92006
[84] Sieber, J; Gonzalez-Buelga, A; Neild, SA; Wagg, DJ; Krauskopf, B, Experimental continuation of periodic orbits through a fold, No. 100, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.