×

Wavelet based estimation for the derivative of a density by block thresholding under random censorship. (English) Zbl 1296.62187

Summary: We consider wavelet based method for estimating derivatives of a density via block thresholding when the data obtained are randomly right censored. The proposed method is analogous to that of P. Hall and P. Patil [Ann. Stat. 23, No. 3, 905–928 (1995; Zbl 0839.62042)] for density estimation in the complete data case that has been extended recently by L. Li [J. Stat. Plann. Inference 117, No. 1, 35–58 (2003; Zbl 1022.62038); J. Multivariate Anal. 99, No. 8, 1518–1543 (2008; Zbl 1144.62026)]. We find bounds for the \(L_{2}\)-loss over a large range of Besov function classes for the resulting estimators. The results of Hall and Patil [loc. cit.], B. L. S. Prakasa Rao [Bull. Inf. Cybern. 28, No. 1, 91–100 (1996; Zbl 0864.62023)] and Li [2003, 2008, loc. cit.] are obtained as special cases and the performance of the proposed estimator is investigated by a numerical study.

MSC:

62N02 Estimation in survival analysis and censored data
62G05 Nonparametric estimation
62G07 Density estimation
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Antoniadis, A., Wavelet methods in statistics: some recent dvelopments and their applications, Statistics surveys, 1, 16-55, (2007) · Zbl 1300.62028
[2] Antoniadis, A.; Bigot, J.; Sapatinas, T., Wavelet estimators in nonparametric regression: a comparative simulation study, Journal of statistical software, 6, (2001), See http://www.jstatsoft.org/v06/i06
[3] Antoniadis, A.; Grégoire, G.; Nason, G., Density and hazard rate estimation for right-censored data by using wavelet methods, Journal of the royal statistical society, 61, 63-84, (1999) · Zbl 0915.62020
[4] Bhattacharya, P.K., Estimation of a probability density function and its derivatives, Sankhyā A, 29, 373-382, (1967) · Zbl 0168.39703
[5] Buckheit, J. B., Chen, S., Donoho, D. L., Johnstone, I. M., & Scargle, J. (1995). About waveLab. Technical report. USA: Department of Statistics, Stanford University. Available at: http://www-stat.stanford.edu/ wavelab.
[6] Cai, T., Adaptive wavelet estimation: a block thresholding and oracle inequality approach, Annals of statistics, 27, 898-924, (1999) · Zbl 0954.62047
[7] Cai, T., On block thresholding in wavelet regression: adaptivity, block size, and threshold level, Statistica sinica, 12, 1241-1273, (2002) · Zbl 1004.62036
[8] Cai, T.T.; Silverman, B.W., Incorporating information on neighboring coefficients into wavelet estimation, Sankhyā B, 63, 127-148, (2001) · Zbl 1192.42020
[9] Chaubey, Y.P.; Doosti, H.; Prakasa Rao, B.L.S., Wavelet based estimation of the derivatives of a density with associated variables, International journal of pure & applied mathematics, 27, 97-106, (2006) · Zbl 1092.62043
[10] Chaubey, Y.P.; Doosti, H.; Prakasa Rao, B.L.S., Wavelet based estimation of derivative of a density for negatively associated process, Journal of statistical theory and practice, 2, 453-463, (2008) · Zbl 1211.62061
[11] Chaubey, Y.P.; Sen, A.; Sen, P.K., Smoothed funcional estimation for censored data, ()
[12] Chicken, E.; Cai, T., Block thresholding for density estimation: local and global adaptivity, Journal of multivariate analysis, 95, 76-106, (2005) · Zbl 1064.62036
[13] Cohen, A.; Daubechies, I.; Vial, P., Wavelets on the interval and fast wavelet transforms, Applied and computational harmonic analysis, 27, 97-106, (1993)
[14] Dabrowska, D.M., Nonparametric regression with censored covariates, Journal of multivariate analysis, 54, 253-283, (1995) · Zbl 0863.62032
[15] Daubechies, I., Orthogonal bases of compactly supported wavelets, Statistica sinica, 41, 909-996, (1988) · Zbl 0644.42026
[16] Daubechies, I., ()
[17] Delouille, V., Simoens, J., & von Sachs, R. (2001). Smooth design-adapted wavelets for nonparametric stochastic regression. Discussion paper 0117. Belgium: Institut de Statistique, UCL. · Zbl 1117.62315
[18] Devroye, L., A course in density estimation, (1987), Birkhaüser MA, USA · Zbl 0617.62043
[19] Diehl, S.; Stute, W., Kernel density and hazard function estimation in the presence of censoring, Journal of multivariate analysis, 25, 299-310, (1988) · Zbl 0661.62028
[20] Donoho, D.L.; Johnstone, I.M., Adapting to unknown smoothness via wavelet shrinking, Journal of the American statistical association, 90, 1200-1224, (1995) · Zbl 0869.62024
[21] Donoho, D.L.; Johnstone, I.M.; Kerkyacharian, G.; Picard, D., Wavelet shrinkage: asymptopia? (with discussion), Journal of the royal statistical society: series B, 57, 301-369, (1995) · Zbl 0827.62035
[22] Hall, P.; Kerkyacharian, G.; Picard, D., Block threshold rules for curve estimation using kernel and wavelet method, Annals of statistics, 26, 922-942, (1998) · Zbl 0929.62040
[23] Hall, P.; Kerkyacharian, G.; Picard, D., On the minimax optimality of block thresholded wavelet estimators, Annals of statistics, 9, 33-50, (1999) · Zbl 0915.62028
[24] Hall, P.; Patil, P., Formulae for Mean integated squared error of non-linear wavelet-based density estimators, Annals of statistics, 23, 905-928, (1995) · Zbl 0839.62042
[25] Härdle, W.; Kerkycharian; Picard, D.; Tsybakov, T., ()
[26] Härdle, W.; Marron, J.S.; Wand, M.P., Bandwidth choice for density derivatives, Journal of the royal statistical society: series B, 52, 223-232, (1990) · Zbl 0699.62036
[27] Leblanc, F., Wavelet linear density estimator for a discrete-time stochastic process: \(L_p\)-losses, Statistics & probability letters, 27, 71-84, (1996) · Zbl 0845.62033
[28] Li, L., Hazard rate estimation for censored data by wavelet methods, Communications in statistics—theory and methods, 31, 943-960, (2002) · Zbl 1075.62636
[29] Li, L., Non-linear wavelet-based density estimators under random censorship, Journal of statistical planning and inference, 117, 35-58, (2003) · Zbl 1022.62038
[30] Li, L., On the block thresholding wavelet estimators with censored data, Journal of multivariate analysis, 99, 1518-1543, (2008) · Zbl 1144.62026
[31] Li, Q.; Racine, J.S., Nonparametric econometrics: theory and practice, (2006), Princeton University Press New Jersey
[32] Mallat, S.G., A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, 11, 674-693, (1989) · Zbl 0709.94650
[33] McNichols, D.T.; Padgett, W.J., Nonparametric estimation from accelerated life tests with random censorship, (), 155-167 · Zbl 0616.62134
[34] Meyer, Y., Wavelets and operators, (1992), Cambridge University Press Cambridge
[35] Müller, H.; Gasser, T., Optimal convergence properties of kernel estimates of derivatives of a density function, (), 144-154
[36] Padgett, W.J.; McNichols, D.T., Nonparametric density estimation from censored data, Communications in statistics—theory and methods, 13, 1581-1611, (1984) · Zbl 0552.62021
[37] Pagan, A.; Ullah, A., Nonparametric econometrics, (1999), Cambridge University Press Cambridge
[38] Parzen, E., On estimation of a probability density function and mode, Annals of mathematical statistics, 33, 1065-1076, (1962) · Zbl 0116.11302
[39] Patil, P., Nonparametric hazard rate estimation by orthogonal wavelet methods, Journal of statistical planning and inference, 60, 153-168, (1997) · Zbl 0900.62213
[40] Prakasa Rao, B.L.S., Nonparametric functional estimation, (1983), Academic Press New York · Zbl 0542.62025
[41] Prakasa Rao, B.L.S., Nonparametric estimation of the derivatives of a density by the method of wavelets, Bulletin of informatics and cybernetics, 28, 91-100, (1996) · Zbl 0864.62023
[42] Rosenblatt, M., Remarks on some nonparametric estimates of a density function, Annals of mathematical statistics, 27, 832-837, (1956) · Zbl 0073.14602
[43] Silverman, B.W., Density estimation for statistics and data analysis, (1986), Chapman and Hall New York, NY · Zbl 0617.62042
[44] Singh, R.S., Applications of estimators of a density and its derivatives to certain statistical problems, Journal of the royal statistical society, B39, 357-363, (1977) · Zbl 0377.62039
[45] Talagrand, M., Sharper bounds for Gaussian and empirical processes, Annals of probability, 22, 1, 28-76, (1994) · Zbl 0798.60051
[46] Tribel, H., Theory of function space II, (1992), Birkhaüser Verlag Berlin
[47] Vidakovic, A., Statistical modelling by wavelets, (1999), Springer New York · Zbl 0924.62032
[48] Wand, M.P.; Jones, M.C., Kernel smoothing, (1995), Chapman and Hall London · Zbl 0854.62043
[49] Wand, M. P., & Ripley, B. D. (2009). KernSmooth: functions for kernel smoothing for Wand and Jones (1995). R package version 2. 22-19. URL: http://CRAN.R-project.org/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.