zbMATH — the first resource for mathematics

Operation inducing systems. (English) Zbl 0636.08002
An operation inducing system is a collection [S,(G,\(\circ),f,h,\Gamma,\cdot]\) composed of a nonempty set S, a groupoid (G,\(\circ)\), functions f:S\(\to G\) and h:S\(\to S\), a subset \(\Gamma\) of G such that f(S)\(\subseteq \Gamma\) and a function “\(\cdot ''\) from \(\Gamma\times S\) into S. The groupoid (S,*) defined by \(x*y=f(x)\cdot h(y)\) is called the induced groupoid. Some earlier constructions used for the description of free commutative medial groupoids and in the representation theory for medial groupoids can be considered as a special type of an operation inducing system. In the present paper conditions on operation inducing systems and the properties engendered by these conditions on induced groupoids are investigated.
Reviewer: J.Ježek

08A05 Structure theory of algebraic structures
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)
08A40 Operations and polynomials in algebraic structures, primal algebras
Full Text: DOI
[1] J. Aczel,Lectures on Functional Equations, Academic press. New York, 1966.
[2] G.Birkenmeier and H.Heatherly,Medial rings, to appear. · Zbl 0685.16021
[3] J. R. Clay,The near-rings on groups of low order, Math. Z.104 (1968), 364-371. · Zbl 0153.35704
[4] C. M. Fulton andM. K. Stein,The passage from geometry to algebra, Math. Ann.134 (1957), 140-142. · Zbl 0079.02501
[5] B. Ganter andH. Werner,Co-ordinatizing Steiner systems, Annals of Discrete Math.7(1980), 3-24. · Zbl 0437.51007
[6] H.Heatherly,Some examples connecting near-rings and medial semigroups, Near-Ring Newsletter (1987), to appear.
[7] J. Je?ek andT. Kepka,Semigroup representations of medial groupoids, Comm. Math. Univ. Carolinae22 (1981), 513-524. · Zbl 0492.08001
[8] J. Jezek andT. Kepka,Free entropic groupoids, Comm. Math. Univ. Carolinae22 (1981), 223-233. · Zbl 0464.08004
[9] J. Je?ek, T. Kepka, andP. Nemec,Distributive Groupoids, Rozpravy ?SAV, ?ada mat. a p?if. v?d. 91/3 (1981), Academia, Praha.
[10] J. Je?ek andT. Kepka,Medial Groupoids, Rozpray CSAV, ?ada mat. a p?i?. v?d, 93/2.(1983), Academia, Praha.
[11] J. Je?ek andT. Kepka,Permutable groupoids, Czech. Math. J.34 (1984), 396-410.
[12] T. Kepka,Varieties of left distributive semigroups, Acta Univ. Carolinae Math. Phys.25 (1984), 3-18. · Zbl 0589.20037
[13] Lee Sin-Min,Lattice of equational subclasses of distributive semigroups, Nanta Math. J.9 (1976), 65-69. · Zbl 0384.20047
[14] S. V. Matveev,Distributive groupoids in knot theory, Math. USSR Sbornik47 (1984), 73-83. · Zbl 0523.57006
[15] D. C. Murdoch,Structure of abelian quasi-groups, Trans. Amer. Math. Soc.49 (1941), 392-409. · Zbl 0025.10003
[16] T. Nordahl,Residual finiteness in permutation varieties of semigroups, Semigroup Forum31 (1985), 33-46. · Zbl 0552.20041
[17] T. Nordahl,Finitely generated left commutative semigroups are residually finite, Semigroup Forum28 (1984), 347-354. · Zbl 0525.20046
[18] M. Petrich,Structure des demi-groupes et anneaux distributifs, C.R. Acad. Sci. Paris. Ser. A.268 (1969), 849-852. · Zbl 0175.01702
[19] M. Petrich,Introduction to Semigroups, Charles E. Merrill Publ. Co., Columbus, 1973. · Zbl 0321.20037
[20] S. K. Stein,On foundations of quasigroups, Trans. Amer. Math. Soc.85 (1957), 228-256. · Zbl 0079.02402
[21] S. K. Stein,Left distributive quasigroups, Proc. Amer. Math. Soc.10 (1959), 577-578. · Zbl 0093.01902
[22] R.Tucci, private communication, December 1986.
[23] A. D.Wallace,Recent results on binary topological algebras, Proc. Symp. Semigroups, Wayne St. U. 1968, K. W. Folley (ed), 261-267.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.