×

zbMATH — the first resource for mathematics

Threefolds of non-negative Kodaira dimension with sectional genus less than or equal to 15. (English) Zbl 0636.14014
From the text: “Let X be a smooth connected n-dimensional subvariety of complex projective space, \({\mathbb{P}}^ N\). Assume that X has non-negative Kodaira dimension, i.e. that some positive power of the canonical bundle \(K_ X\) has a non-trivial holomorphic section. In this paper we use the results of A. J. Sommese [J. Reine Angew. Math. 329, 16-41 (1981; Zbl 0509.14044)] to investigate what the numerical invariants of such X are under the assumption that the sectional genus g of X (i.e. the genus of \(X\cap {\mathbb{P}}^{N-n+1}\) for a generic linear \({\mathbb{P}}^{N- n+1}\subseteq {\mathbb{P}}^ N)\) is small. This problem is studied most thoroughly under the assumptions that \(n=3\) and \(g\leq 15\), but a number of partial results for arbitrary g and n are shown.
In § 0 we recall background material and especially the quoted results of Sommese. The latter results relate the surface \(S=X\cap {\mathbb{P}}^{N- n+2}\) for a general linear \({\mathbb{P}}^{N-n+2}\) to its minimal model S’. This lets us use the arguments from the theory of minimal surface to prove a number of results about the invariants of X. We also generalize a result of P. Griffiths and J. Harris [Ann. Math., II. Ser. 108, 461-505 (1978; Zbl 0423.14001)] by relaxing a hypothesis about a projective n-fold X from \(``h^{n,O}(X)\neq O''\) to “X is of non- negative Kodaira dimension”.
In § 1 we prove a number of general results. One example is the following theorem. Let X be an n-dimensional connected submanifold of \({\mathbb{P}}^ N\) not contained in any hyperplane. Let d denote the degree of X in \({\mathbb{P}}^ N\) and assume that \(K^ t_ X\approx {\mathcal O}_ X\) for some \(t\neq 0\). If \(d<n(N+1)\) then the order of the fundamental group of X is finite and bounded by \((n^ 2+n-2)/(n(N+1)-d)\). In particular X is simply connected if \(d\leq n(N-(n-1)/2).''\)
In section 2 and 3 the threefolds in \({\mathbb{P}}^ 5\) and \({\mathbb{P}}^ 6\) are dealt with in several tables.
Reviewer: E.Stagnaro

MSC:
14J10 Families, moduli, classification: algebraic theory
14J30 \(3\)-folds
14J40 \(n\)-folds (\(n>4\))
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] H.F. Baker , Principles of Geometry , vol. V , Cambridge , 1933 . Zbl 0008.21906 | JFM 59.0620.04 · Zbl 0008.21906 · www.emis.de
[2] W. Barth - C. Peters - A. Van De Ven , Compact Complex Surfaces , Springer-Verlag , Berlin - Heidelberg - New York ( 1984 ). MR 749574 | Zbl 0718.14023 · Zbl 0718.14023
[3] W. Barth , Larsen’s theorem on homotopy groups of projective manifolds Of small embedding codimension , Proc. Sympos. Pure Math. , 29 ( 1975 ), pp. 307 - 313 . MR 377123 | Zbl 0309.14017 · Zbl 0309.14017
[4] W. Fulton , Intersection Theory , Springer-Verlag , Berlin - Heidelberg - New York ( 1984 ). MR 732620 | Zbl 0541.14005 · Zbl 0541.14005
[5] P.A. Griffiths - J. Harris , Residues and zero cycles on algebraic varieties , Ann. of Math. , 108 ( 1978 ), pp. 461 - 505 . MR 512429 | Zbl 0423.14001 · Zbl 0423.14001 · doi:10.2307/1971184
[6] A. Beauville , Variétés kähleriennes dont la première classe de Chern est nulle , J. Differential Geom. , 18 ( 1983 ), pp. 755 - 782 . MR 730926 | Zbl 0537.53056 · Zbl 0537.53056
[7] R. Hartshorne , Ample subvarieties of algebraic varieties , Lecture Notes in Math. 156 , Berlin - Heidelberg - New York ( 1970 ). MR 282977 | Zbl 0208.48901 · Zbl 0208.48901 · doi:10.1007/BFb0067839 · eudml:203415
[8] R. Hartshorne , Algebraic Geometry , Springer-Verlag , Berlin - Heidelberg - New York ( 1977 ). MR 463157 | Zbl 0367.14001 · Zbl 0367.14001
[9] A. Holme - M. Schneider , A computer aided approach to codimension 2 subvarieties of Pn, n \succcurleq 6 , preprint. · Zbl 0581.14035
[10] Y. Kawamata , A generalization of Kodaira-Ramanujam’s vanishing theorem , Math. Ann. , 261 ( 1982 ), pp. 43 - 46 . MR 675204 | Zbl 0476.14007 · Zbl 0476.14007 · doi:10.1007/BF01456407 · eudml:182862
[11] M. Reid , Canonical 3-folds , Algebraic Geometry , ed. by A. Beauville, Siythoff & Noordholf , Netherlands ( 1980 ). MR 605348 · Zbl 0451.14014
[12] B. Shiffman - A.J. Sommese , Vanishing theorems on complex manifolds , to appear in Progr. Math. , Birkhauser . MR 782484 | Zbl 0578.32055 · Zbl 0578.32055
[13] A.J. Sommese , Complex subspaces of homogeneous complex manifolds.- II: Homotopy results , Nagoya Math. J. , 86 ( 1982 ), pp. 101 - 129 . Article | MR 661221 | Zbl 0497.32026 · Zbl 0497.32026 · minidml.mathdoc.fr
[14] A.J. Sommese , Hyperplane sections of projective surfaces. - I : The adjunction mapping , Duke Math. J. , 46 ( 1979 ), pp. 377 - 401 . Article | MR 534057 | Zbl 0415.14019 · Zbl 0415.14019 · doi:10.1215/S0012-7094-79-04616-7 · minidml.mathdoc.fr
[15] A.J. Sommese , On the minimality of hyperplane sections of projective threefolds , J. Reine Angew. Math. , 329 ( 1981 ), pp. 16 - 41 . MR 636441 | Zbl 0509.14044 · Zbl 0509.14044 · doi:10.1515/crll.1981.329.16 · eudml:183533
[16] E. Viehweg , Vanishing theorems , J. Reine Angew. Math. , 355 ( 1982 ),. pp. 1 - 8 . MR 667459 | Zbl 0485.32019 · Zbl 0485.32019 · doi:10.1515/crll.1982.335.1 · crelle:GDZPPN002199688 · eudml:152458
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.