zbMATH — the first resource for mathematics

MadGraph 5: going beyond. (English) Zbl 1298.81362
Summary: MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.

81V05 Strong interaction, including quantum chromodynamics
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81-08 Computational methods for problems pertaining to quantum theory
Full Text: DOI
[1] A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
[2] CompHEP collaboration; Boos, E.; etal., Comphep 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth., A 534, 250, (2004)
[3] A. Pukhov, Calchep 2\(.\)3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
[4] Stelzer, T.; Long, WF, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun., 81, 357, (1994)
[5] Maltoni, F.; Stelzer, T., Madevent: automatic event generation with madgraph, JHEP, 02, 027, (2003)
[6] Alwall, J.; etal., Madgraph/madevent v4: the new web generation, JHEP, 09, 028, (2007)
[7] Gleisberg, T.; etal., SHERPA 1.alpha, a proof-of-concept version, JHEP, 02, 056, (2004)
[8] Caravaglios, F.; Moretti, M., An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B 358, 332, (1995)
[9] Draggiotis, P.; Kleiss, RHP; Papadopoulos, CG, On the computation of multigluon amplitudes, Phys. Lett., B 439, 157, (1998)
[10] Duhr, C.; Hoeche, S.; Maltoni, F., Color-dressed recursive relations for multi-parton amplitudes, JHEP, 08, 062, (2006)
[11] M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES].
[12] W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[13] W. Kilian, W HIZARD 1\(.\)0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039.
[14] Mangano, ML; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, AD, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP, 07, 001, (2003)
[15] C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES].
[16] Gleisberg, T.; Hoeche, S., Comix, a new matrix element generator, JHEP, 12, 039, (2008)
[17] Christensen, ND; Duhr, C., Feynrules — Feynman rules made easy, Comput. Phys. Commun., 180, 1614, (2009)
[18] Christensen, ND; etal., A comprehensive approach to new physics simulations, Eur. Phys. J., C 71, 1541, (2011)
[19] C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES].
[20] C. Degrande et al., UFO — The Universal FeynRules Output.
[21] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J., C 53, 501, (2008)
[22] M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
[23] Hasegawa, K.; Moch, S.; Uwer, P., Automating dipole subtraction, Nucl. Phys. Proc. Suppl., 183, 268, (2008)
[24] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, JHEP, 09, 122, (2008)
[25] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085, (2009)
[26] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003, (2009)
[27] G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES].
[28] Ellis, RK; Melnikov, K.; Zanderighi, G., Generalized unitarity at work: first NLO QCD results for hadronic \(W\) + 3 jet production, JHEP, 04, 077, (2009)
[29] Berger, CF; etal., Precise predictions for \(W\) + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[30] Hameren, A.; Papadopoulos, CG; Pittau, R., Automated one-loop calculations: a proof of concept, JHEP, 09, 106, (2009)
[31] Berger, CF; etal., Next-to-leading order QCD predictions for \(Z\), \(γ\)\^{}{∗} + 3-jet distributions at the tevatron, Phys. Rev., D 82, 074002, (2010)
[32] Berger, CF; etal., Precise predictions for \(W\) + 4 jet production at the large hadron collider, Phys. Rev. Lett., 106, 092001, (2011)
[33] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[34] Hirschi, V.; etal., Automation of one-loop QCD corrections, JHEP, 05, 044, (2011)
[35] Sjöstrand, T.; Mrenna, S.; Skands, PZ, PYTHIA 6.4 physics and manual, JHEP, 05, 026, (2006)
[36] Corcella, G.; etal., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP, 01, 010, (2001)
[37] Gleisberg, T.; etal., Event generation with SHERPA 1.1, JHEP, 02, 007, (2009)
[38] Catani, S.; Krauss, F.; Kuhn, R.; Webber, BR, QCD matrix elements + parton showers, JHEP, 11, 063, (2001)
[39] Krauss, F., Matrix elements and parton showers in hadronic interactions, JHEP, 08, 015, (2002)
[40] Mrenna, S.; Richardson, P., Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP, 05, 040, (2004)
[41] Mangano, ML; Moretti, M.; Piccinini, F.; Treccani, M., Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP, 01, 013, (2007)
[42] Lönnblad, L., Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP, 05, 046, (2002)
[43] Lavesson, N.; Lönnblad, L., W + jets matrix elements and the dipole cascade, JHEP, 07, 054, (2005)
[44] Hoeche, S.; Krauss, F.; Schumann, S.; Siegert, F., QCD matrix elements and truncated showers, JHEP, 05, 053, (2009)
[45] S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
[46] Alwall, J.; etal., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J., C 53, 473, (2008)
[47] Krauss, F.; Schalicke, A.; Schumann, S.; Soff, G., Simulating W/Z + jets production at the tevatron, Phys. Rev., D 70, 114009, (2004)
[48] Englert, C.; Plehn, T.; Schichtel, P.; Schumann, S., Jets plus missing energy with an autofocus, Phys. Rev., D 83, 095009, (2011)
[49] Alwall, J.; Visscher, S.; Maltoni, F., QCD radiation in the production of heavy colored particles at the LHC, JHEP, 02, 017, (2009)
[50] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[51] Frixione, S.; Nason, P.; Webber, BR, Matching NLO QCD and parton showers in heavy flavour production, JHEP, 08, 007, (2003)
[52] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[53] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043, (2010)
[54] J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory.
[55] Sjöstrand, T.; Mrenna, S.; Skands, PZ, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun., 178, 852, (2008)
[56] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11.
[57] Cho, GC; etal., Weak boson fusion production of supersymmetric particles at the LHC, Phys. Rev., D 73, 054002, (2006)
[58] Denner, A.; Eck, H.; Hahn, O.; Kublbeck, J., Feynman rules for fermion number violating interactions, Nucl. Phys., B 387, 467, (1992)
[59] Mangano, ML; Parke, SJ, Multi-parton amplitudes in gauge theories, Phys. Rept., 200, 301, (1991)
[60] Duca, V.; Dixon, LJ; Maltoni, F., New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys., B 571, 51, (2000)
[61] Maltoni, F.; Paul, K.; Stelzer, T.; Willenbrock, S., Color-flow decomposition of QCD amplitudes, Phys. Rev., D 67, 014026, (2003)
[62] Berends, FA; Giele, WT, Recursive calculations for processes with n gluons, Nucl. Phys., B 306, 759, (1988)
[63] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys., B 715, 499, (2005)
[64] S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES].
[65] Han, T.; Lewis, I.; McElmurry, T., QCD corrections to scalar diquark production at hadron colliders, JHEP, 01, 123, (2010)
[66] Alwall, J.; etal., A standard format for LES houches event files, Comput. Phys. Commun., 176, 300, (2007)
[67] J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES].
[68] Hagiwara, K.; Kanzaki, J.; Li, Q.; Mawatari, K., HELAS and madgraph/madevent with spin-2 particles, Eur. Phys. J., C 56, 435, (2008)
[69] Hagiwara, K.; Mawatari, K.; Takaesu, Y., HELAS and madgraph with spin-3/2 particles, Eur. Phys. J., C 71, 1529, (2011)
[70] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[71] N. D. Christensen and C. Speckner, Automated validation of FeynRules models.
[72] Zhang, C.; Willenbrock, S., Effective-field-theory approach to top-quark production and decay, Phys. Rev., D 83, 034006, (2011)
[73] Aguilar-Saavedra, JA, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys., B 843, 638, (2011)
[74] Degrande, C.; Gerard, J-M; Grojean, C.; Maltoni, F.; Servant, G., Non-resonant new physics in top pair production at hadron colliders, JHEP, 03, 125, (2011)
[75] C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES].
[76] S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
[77] J. Conway, Pretty Good Simulator, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs.html
[78] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690, (1999)
[79] Randall, L.; Sundrum, R., A large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.