Rasouli, Sayyed Hashem A population biological model with a singular nonlinearity. (English) Zbl 1340.35056 Appl. Math., Praha 59, No. 3, 257-264 (2014). The following quasilinear elliptic problem is considered\[ -{\text{div}}(|x|^{-\alpha p}|\nabla u|^{p-2}\nabla u)=|x|^{-(\alpha+1)p+\beta}\Big(au^{p-1}-f(u)-cu^{-\gamma} \Big) \]in a smooth and bounded domain \(\Omega\subset{\mathbb R}^N\) which contains the origin. Here \(1<p<N\), \(0\leq \alpha<(N-p)/p\), \(\gamma\in (0,1)\), and \(a,\alpha, \beta,c\) are positive constants. The solution is assumed to satisfy \(u=0\) on \(\partial\Omega\). Under some additional assumptions on \(f(u)\) and on the contants \(\gamma, a\) and \(c>0\) it is obtained the existence of a positive solution. The approach relies on the upper and lower solution method. Reviewer: Marius Ghergu (Dublin) Cited in 3 Documents MSC: 35J62 Quasilinear elliptic equations 92D25 Population dynamics (general) 35B09 Positive solutions to PDEs 35A01 Existence problems for PDEs: global existence, local existence, non-existence Keywords:quasilinear elliptic problem; singularities; upper and lower solution method; population biology PDF BibTeX XML Cite \textit{S. H. Rasouli}, Appl. Math., Praha 59, No. 3, 257--264 (2014; Zbl 1340.35056) Full Text: DOI Link OpenURL References: [1] Atkinson, C.; El-Ali, K., Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech., 41, 339-363, (1992) · Zbl 0747.76012 [2] Bueno, H.; Ercole, G.; Ferreira, W.; Zumpano, A., Existence and multiplicity of positive solutions for the \(p\)-Laplacian with nonlocal coefficient, J. Math. Anal. Appl., 343, 151-158, (2008) · Zbl 1141.35029 [3] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequalities with weights, Compos. Math., 53, 259-275, (1984) · Zbl 0563.46024 [4] Cañada, A.; Drábek, P.; Gámez, J. L., Existence of positive solutions for some problems with nonlinear diffusion, Trans. Am. Math. Soc., 349, 4231-4249, (1997) · Zbl 0884.35039 [5] R. S. Cantrell, C. Cosner: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, Wiley, Chichester, 2003. · Zbl 1059.92051 [6] Cîrstea, F.; Motreanu, D.; Rǎdulescu, V., Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 43, 623-636, (2001) · Zbl 0972.35038 [7] Drábek, P.; Hernández, J., Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 44, 189-204, (2001) · Zbl 0991.35035 [8] P. Drábek, P. Krejčí, P. Takáč (eds.): Nonlinear Differential Equations. Proceedings of talks given at the seminar in differential equations, Chvalatice, Czech Republic, June 29-July 3, 1998. Chapman & Hall/CRC Research Notes in Mathematics 404, Chapman & Hall/CRC, Boca Raton, 1999. · Zbl 0919.00053 [9] Drábek, P.; Rasouli, S.H., A quasilinear eigenvalue problem with Robin conditions on the non-smooth domain of finite measure, Z. Anal. Anwend, 29, 469-485, (2010) · Zbl 1202.35149 [10] Fang, F.; Liu, S., Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl., 351, 138-146, (2009) · Zbl 1161.35016 [11] Lee, E.K.; Shivaji, R.; Ye, J., Positive solutions for infinite semipositone problems with falling zeros, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 72, 4475-4479, (2010) · Zbl 1190.35095 [12] Miyagaki, O.H.; Rodrigues, R. S., On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl., 334, 818-833, (2007) · Zbl 1155.35024 [13] J.D. Murray: Mathematical Biology, Vol. 1: An Introduction. 3rd ed. Interdisciplinary Applied Mathematics 17, Springer, New York, 2002. · Zbl 1006.92001 [14] Rasouli, S.H.; Afrouzi, G.A., The Nehari manifold for a class of concave-convex elliptic systems involving the p-Laplacian and nonlinear boundary condition, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 73, 3390-3401, (2010) · Zbl 1200.35103 [15] Smoller, J.; Wasserman, A., Global bifurcation of steady-state solutions, J. Differ. Equations, 39, 269-290, (1981) · Zbl 0425.34028 [16] B. Xuan: The eigenvalue problem for a singular quasilinear elliptic equation. Electron. J. Differ. Equ. (electronic only) 2004 (2004), Paper No. 16. · Zbl 1217.35131 [17] Xuan, B., The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 62, 703-725, (2005) · Zbl 1130.35061 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.