×

zbMATH — the first resource for mathematics

NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories. (English) Zbl 1298.81413
Summary: Virtual fermionic \(N_{f} = 1\) and \(N_{f} = 2\) contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package BBA_NNLO_HF, and real corrections with the Monte Carlo generators BHAGEN-1PH, HELAC-PHEGAS and EKHARA. Numerical results are discussed at the energies of and with realistic cuts used at the DA{\(\Phi\)}NE factory DANE, at the \(B\) factories PEP-II and KEK, and at the charm/{\(\tau\)} factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator BabaYaga@NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy.
MSC:
81V10 Electromagnetic interaction; quantum electrodynamics
81U05 \(2\)-body potential quantum scattering theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
65C05 Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Actis, S.; etal., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J., C 66, 585, (2010)
[2] Bern, Z.; Dixon, LJ; Ghinculov, A., Two-loop correction to Bhabha scattering, Phys. Rev., D 63, 053007, (2001)
[3] Glover, EWN; Tausk, JB; Bij, JJ, Second order contributions to elastic large-angle Bhabha scattering, Phys. Lett., B 516, 33, (2001)
[4] Penin, AA, Two-loop corrections to Bhabha scattering, Phys. Rev. Lett., 95, 010408, (2005)
[5] Bonciani, R.; Ferroglia, A.; Mastrolia, P.; Remiddi, E.; Bij, JJ, Planar box diagram for the (N_{f} = 1)2-loop QED virtual corrections to Bhabha scattering, Nucl. Phys., B 681, 261, (2004)
[6] Bonciani, R.; Ferroglia, A.; Mastrolia, P.; Remiddi, E.; Bij, JJ, Two-loop N_{f} =1 QED Bhabha scattering: soft emission and numerical evaluation of the di erential cross-section, Nucl. Phys., B 716, 280, (2005)
[7] Bonciani, R.; Ferroglia, A.; Mastrolia, P.; Remiddi, E.; Bij, JJ, Two-loop N_{f} =1 QED Bhabha scattering differential cross section, Nucl. Phys., B 701, 121, (2004)
[8] Actis, S.; Czakon, M.; Gluza, J.; Riemann, T., Two-loop fermionic corrections to massive Bhabha scattering, Nucl. Phys., B 786, 26, (2007)
[9] Becher, T.; Melnikov, K., Two-loop QED corrections to Bhabha scattering, JHEP, 06, 084, (2007)
[10] Bonciani, R.; Ferroglia, A.; Penin, AA, Heavy-avor contribution to Bhabha scattering, Phys. Rev. Lett., 100, 131601, (2008)
[11] Actis, S.; Czakon, M.; Gluza, J.; Riemann, T., Fermionic NNLO contributions to Bhabha scattering, Acta Phys. Polon., B 38, 3517, (2007)
[12] Actis, S.; Czakon, M.; Gluza, J.; Riemann, T., Virtual hadronic and leptonic contributions to Bhabha scattering, Phys. Rev. Lett., 100, 131602, (2008)
[13] Actis, S.; Czakon, M.; Gluza, J.; Riemann, T., Virtual hadronic and heavy-fermion O(α\^{}{2}) corrections to Bhabha scattering, Phys. Rev., D 78, 085019, (2008)
[14] Kuhn, JH; Uccirati, S., Two-loop QED hadronic corrections to Bhabha scattering, Nucl. Phys., B 806, 300, (2009)
[15] S. Actis, M. Czakon, J. Gluza and T. Riemann, Fortran package bha nnlo hf, obtainable on request from the authors.
[16] Arbuzov, AB; Kuraev, EA; Merenkov, NP; Trentadue, L., Virtual and soft real pair production in large angle Bhabha scattering, Phys. Atom. Nucl., 60, 591, (1997)
[17] Kanaki, A.; Papadopoulos, CG, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306, (2000)
[18] Papadopoulos, CG, PHEGAS: a phase space generator for automatic cross-section computation, Comput. Phys. Commun., 137, 247, (2001)
[19] Papadopoulos, CG; Worek, M., Multi-parton cross sections at hadron colliders, Eur. Phys. J., C 50, 843, (2007)
[20] Cafarella, A.; Papadopoulos, CG; Worek, M., Helac-phegas: a generator for all parton level processes, Comput. Phys. Commun., 180, 1941, (2009)
[21] Montagna, G.; Moretti, M.; Nicrosini, O.; Pallavicini, A.; Piccinini, F., Light pair correction to Bhabha scattering at small angle, Nucl. Phys., B 547, 39, (1999)
[22] Montagna, G.; Moretti, M.; Nicrosini, O.; Pallavicini, A.; Piccinini, F., Light-pair corrections to small-angle Bhabha scattering in a realistic set-up at LEP, Phys. Lett., B 459, 649, (1999)
[23] Czyz, H.; Ivashyn, S., EKHARA: a Monte Carlo generator for e\^{}{+}e\^{}{−} → e\^{}{+}e\^{}{−}π\^{}{0} and e\^{}{+}e\^{}{−}toe\^{}{+}e\^{}{−}π\^{}{+}π\^{}{−} processes, Comput. Phys. Commun., 182, 1338, (2011)
[24] Czyz, H.; Nowak-Kubat, E., The reaction e\^{}{+}e\^{}{−} → e\^{}{+}e\^{}{−}π\^{}{+}π\^{}{−} and the pion form factor measurements via the radiative return method, Phys. Lett., B 634, 493, (2006)
[25] Czyz, H.; Nowak-Kubat, E., Radiative return via electron pair production: Monte Carlo simulation of the process e\^{}{+}e\^{}{−} → π\^{}{+}π\^{}{−} e\^{}{+}e\^{}{−}, Acta Phys. Polon., B 36, 3425, (2005)
[26] Czyz, H.; Nowak, E., E\^{}{+}e\^{}{−} → π\^{}{+}π\^{}{−} e\^{}{+}e\^{}{−}: a potential background for σ(e\^{}{+}e\^{}{−} → π\^{}{+}π\^{}{−}) measurement via radiative return method, Acta Phys. Polon., B 34, 5231, (2003)
[27] Bruch, C.; Khodjamirian, A.; Kuhn, JH, Modeling the pion and kaon form factors in the timelike region, Eur. Phys. J., C 39, 41, (2005)
[28] Carloni Calame, CM; Lunardini, C.; Montagna, G.; Nicrosini, O.; Piccinini, F., Large-angle Bhabha scattering and luminosity at flavour factories, Nucl. Phys., B 584, 459, (2000)
[29] Carloni Calame, CM, An improved parton shower algorithm in QED, Phys. Lett., B 520, 16, (2001)
[30] Carloni Calame, CM; Montagna, G.; Nicrosini, O.; Piccinini, F., The babayaga event generator, Nucl. Phys. Proc. Suppl., 131, 48, (2004)
[31] Balossini, G.; Carloni Calame, CM; Montagna, G.; Nicrosini, O.; Piccinini, F., Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys., B 758, 227, (2006)
[32] Melles, M., Exact results on O(α\^{}{2}) single bremsstrahlung corrections to low angle Bhabha scattering at LEP/SLC energies, Acta Phys. Polon., B 28, 1159, (1997)
[33] Fleischer, J.; Gluza, J.; Kajda, K.; Riemann, T., Pentagon diagrams of Bhabha scattering, Acta Phys. Polon., B 38, 3529, (2007)
[34] Kajda, K.; Sabonis, T.; Yundin, V., QED pentagon contributions to e\^{}{+}e\^{}{−} → μ\^{}{+}μ\^{}{−}γ, Acta Phys. Polon., B40, 3127, (2009)
[35] Actis, S.; Mastrolia, P.; Ossola, G., Numerical evaluation of one-loop scattering amplitudes for hard-photon emission in Bhabha scattering, Acta Phys. Polon., B 40, 2957, (2009)
[36] Actis, S.; Mastrolia, P.; Ossola, G., NLO QED corrections to hard-bremsstrahlung emission in Bhabha scattering, Phys. Lett., B 682, 419, (2010)
[37] Remiddi, E.; Vermaseren, JAM, Harmonic polylogarithms, Int. J. Mod. Phys., A 15, 725, (2000)
[38] Kniehl, BA; Krawczyk, M.; Kuhn, JH; Stuart, RG, Hadronic contributions to O(α\^{}{2}) radiative corrections in e\^{}{+}e\^{}{−} annihilation, Phys. Lett., B 209, 337, (1988)
[39] Burgers, GJH, On the two loop QED vertex correction in the high-energy limit, Phys. Lett., B 164, 167, (1985)
[40] Bonciani, R.; Mastrolia, P.; Remiddi, E., QED vertex form factors at two loops, Nucl. Phys., B 676, 399, (2004)
[41] H. Czyz and M. Gunia, Fortran package BHAGEN-1PH-VAC, obtainable on request from the authors.
[42] Cao, M.; Czyz, H., BHAGEN-1PH: a Monte Carlo event generator for radiative Bhabha scattering, Comput. Phys. Commun., 100, 99, (1997)
[43] Cao, M.; Czyz, H.; Remiddi, E., Simulation of the process e\^{}{+}e\^{}{−} → e\^{}{+}e\^{}{−}γ within electroweak theory with longitudinally polarized initial electrons, Phys. Lett., B 378, 357, (1996)
[44] Gleisberg, T.; Krauss, F.; Papadopoulos, CG; Schaelicke, A.; Schumann, S., Cross sections for multi-particle final states at a linear collider, Eur. Phys. J., C 34, 173, (2004)
[45] Alwall, J.; etal., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J., C 53, 473, (2008)
[46] Englert, C.; Jager, B.; Worek, M.; Zeppenfeld, D., Observing strongly interacting vector boson systems at the CERN large hadron collider, Phys. Rev., D 80, 035027, (2009)
[47] T. Teubner et al., Fortran program VP HLMNT v2 0, (15 July 2010).
[48] Hagiwara, K.; Liao, R.; Martin, AD; Nomura, D.; Teubner, T., (g − 2)_{μ} and α(M_{Z}\^{}{2}) re-evaluated using new precise data, J. Phys., G 38, 085003, (2011)
[49] Hagiwara, K.; Martin, AD; Nomura, D.; Teubner, T., Predictions for g − 2 of the muon and α_{QED}(M_{Z}\^{}{2}), Phys. Rev., D 69, 093003, (2004)
[50] Hagiwara, K.; Martin, AD; Nomura, D.; Teubner, T., Improved predictions for g − 2 of the muon and α_{QED}(M_{Z}\^{}{2}), Phys. Lett., B 649, 173, (2007)
[51] Teubner, T., Status and prospects of (g − 2)_{μ} and ∆α_{QED}, talk at SUSY 2008, AIP Conf. Proc., 1078, 102, (2009)
[52] Harlander, RV; Steinhauser, M., Rhad: a program for the evaluation of the hadronic R-ratio in the perturbative regime of QCD, Comput. Phys. Commun., 153, 244, (2003)
[53] Lepage, GP, A new algorithm for adaptive multidimensional integration, J. Comp. Phys., 27, 192, (1978)
[54] F. Jegerlehner, Fortran package alphaQED, online at http://www-com.physik.hu-berlin.de/˜fjeger/.
[55] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[56] Caravaglios, F.; Moretti, M., An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B 358, 332, (1995)
[57] Skrzypek, M., Leading logarithmic calculations of QED corrections at LEP, Acta Phys. Polon., B 23, 135, (1992)
[58] Arbuzov, AB, Non-singlet splitting functions in QED, Phys. Lett., B 470, 252, (1999)
[59] Arbuzov, AB; Bytev, VV; Kuraev, EA; Tomasi-Gustafsson, E.; Bystritskiy, YM, Structure function approach in QED for high energy processes, Phys. Part. Nucl., 41, 394, (2010)
[60] Jadach, S.; Skrzypek, M.; Ward, BFL, Analytical results for low angle Bhabha scattering with pair production, Phys. Rev., D 47, 3733, (1993)
[61] G. Montagna et al., Status and accuracy of the Monte Carlo generators for luminosity measurements, arXiv:1002.1914 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.