The two-body interaction potential in the STF tensor formalism: an application to binary asteroids. (English) Zbl 1298.70014

Summary: The symmetric trace free (STF) tensor formalism, developed by T. Hartmann et al. [Celest. Mech. Dyn. Astron. 60, No. 1, 139–159 (1994; Zbl 0818.70014)], is a nice tool, not much used in Celestial Mechanics. It is fully equivalent to the usual spherical harmonics but permits more elegant and compact formulations. The coupling between the gravitational fields of extended bodies with this formalism has been used in [S. Mathis and C. Le Poncin-Lafitte, “ Tidal dynamics of extended bodies in planetary systems and multiple stars”, Astron. Astrophys. 497, No. 3, 889-910 (2009; doi:10.1051/0004-6361/20079054)] for binary stars or planetary systems, but not yet applied to binary asteroids. However, binary asteroids are common in the Solar System and usually their study requires a full two rigid body approach. The formulation of the two-body interaction potential in the STF formalism in the full two rigid body problem is detailed and completed in this article. An application to the binary asteroid (66391) 1999 KW4 is presented with a comparison of our results with other results of the literature for validation.


70F15 Celestial mechanics
70F05 Two-body problems
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics


Zbl 0818.70014


Full Text: DOI


[1] Benner, LAM; Ostro, SJ; Giorgini, JD; Jurgens, RF; Margot, JL; Nolan, MC, 1999 kw4, IAU Circ., 7632, 1, (2001)
[2] Blanchet, L; Damour, T, Radiative gravitational fields in general relativity. I—general structure of the field outside the source, R. Soc. Lond. Philos. Trans. Ser. A, 320, 379-430, (1986) · Zbl 0604.35073
[3] Borderies, N, Mutual gravitational potential of N solid bodies, Celest. Mech., 18, 295-307, (1978) · Zbl 0388.70006
[4] Boué, G; Laskar, J, Spin axis evolution of two interacting bodies, Icarus, 201, 750-767, (2009)
[5] Compère, A; Lemaître, A; Delsate, N, Detection by MEGNO of the gravitational resonances between a rotating ellipsoid and a point mass satellite, Celest. Mech. Dyn. Astron., 112, 75-98, (2012)
[6] Courant, R., Hilbert, D.: Methods of Mathematical Physics, vols. 1, 2 Interscience Publication, New York (1953) · Zbl 0051.28802
[7] Delsate, N.: Analytical and numerical study of the ground-track resonances of Dawn orbiting Vesta. Planet Space Sci. 59, 1372-1383 (2011). doi:10.1016/j.pss.2011.04.013,1201.2038
[8] Delsate, N., Compère, A.: NIMASTEP: a software to modelize, study, and analyze the dynamics of various small objects orbiting specific bodies. Astron. Astrophys. 540, A120 (2012). doi:10.1051/0004-6361/201118522,1112.1304
[9] Delsate, N., Robutel, P., Lemaître, A., Carletti, T.: Frozen orbits at high eccentricity and inclination: application to Mercury orbiter. Celest. Mech. Dyn. Astron. 108, 275-300 (2010). doi:10.1007/s10569-010-9306-2.0327 · Zbl 1223.70080
[10] Fahnestock, EG; Scheeres, DJ, Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach, Celest. Mech. Dyn. Astron., 96, 317-339, (2006) · Zbl 1116.70014
[11] Fahnestock, EG; Scheeres, DJ, Simulation and analysis of the dynamics of binary near-Earth asteroid (66391) 1999 KW4, Icarus, 194, 410-435, (2008)
[12] Frouard, J., Compère, A.: Instability zones for satellites of asteroids: the example of the (87) Sylvia system. Icarus 220, 149-161 (2012). doi:10.1016/j.icarus.2012.04.026,1112.5363
[13] Gelfand, I., Minlos, R., Shapiro, Z.: Representation of the Rotation of the Lorentz Groups Pergamon Press/MacMillan, New York (1963)
[14] Hartmann, T; Soffel, MH; Kioustelidis, T, On the use of STF-tensors in celestial mechanics, Celest. Mech. Dyn. Astron., 60, 139-159, (1994) · Zbl 0818.70014
[15] Lemaître, A; Delsate, N; Valk, S, A web of secondary resonances for large A/m geostationary debris, Celest. Mech. Dyn. Astron., 104, 383-402, (2009) · Zbl 1204.70024
[16] Maciejewski, AJ, Reduction, relative equilibria and potential in the two rigid bodies problem, Celest. Mech. Dyn. Astron., 63, 1-28, (1995) · Zbl 0883.70007
[17] Mathis, S; Poncin-Lafitte, C, Tidal dynamics of extended bodies in planetary systems and multiple stars, Astron. Astrophys., 497, 889-910, (2009) · Zbl 1177.85031
[18] Noll, K.S., Grundy, W.M., Chiang, E.I., Margot, J.-L., Kern, S. D.: Binaries in the Kuiper Belt, The Solar System Beyond Neptune. In: Barucci M. A., Boehnhardt H., Cruikshank D. P., Morbidelli A. (eds.), pp 345-363, 592 pp. University of Arizona Press, Tucson.
[19] Ostro, SJ; etal., Radar imaging of binary near-Earth asteroid (66391) 1999 KW4, Science, 314, 1276-1280, (2006)
[20] Pravec, P; Harris, AW, Binary asteroid population. 1. angular momentum content, Icarus, 190, 250-259, (2007)
[21] Pravec, P; Sarounova, L, 1999 kw4, IAU Circ., 7633, 2, (2001)
[22] Pravec, P; etal., Photometric survey of binary near-Earth asteroids, Icarus, 181, 63-93, (2006)
[23] Pravec, P; etal., Binary asteroid population. 2. anisotropic distribution of orbit poles of small, inner main-belt binaries, Icarus, 218, 125-143, (2012)
[24] Scheeres, DJ, Stability of binary asteroids, Icarus, 159, 271-283, (2002)
[25] Scheeres, DJ; etal., Dynamical configuration of binary near-Earth asteroid (66391) 1999 KW4, Science, 314, 1280-1283, (2006)
[26] Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Springer Science+Business Media, LLC, New York (1980) · Zbl 0893.00007
[27] Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299-340 (1980). doi:10.1103/RevModPhys.52.299 · Zbl 1177.85031
[28] Valk, S., Delsate, N., Lemaître, A., Carletti, T.: Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator. Adv. Space Res. 43, 1509-1526 (2009). doi:10.1016/j.asr.2009.02.014,0810.1859
[29] Werner, RA; Scheeres, DJ, Mutual potential of homogeneous polyhedra, Celest. Mech. Dyn. Astron., 91, 337-349, (2005) · Zbl 1151.70312
[30] Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra Academic Press, New York (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.