×

zbMATH — the first resource for mathematics

Two-loop soft corrections and resummation of the thrust distribution in the dijet region. (English) Zbl 1298.81487
Summary: The thrust distribution in electron-positron annihilation is a classical precision QCD observable. Using renormalization group (RG) evolution in Laplace space, we perform the resummation of logarithmically enhanced corrections in the dijet limit, \(T \to 1\) to next-to-next-to-leading logarithmic (NNLL) accuracy. We independently derive the two-loop soft function for the thrust distribution and extract an analytical expression for the NNLL resummation coefficient \(g_{3}\). Our findings confirm earlier NNLL resummation results for the thrust distribution in soft-collinear effective theory. To combine the resummed expressions with the fixed-order results, we derive the \(\log(R)\)-matching and \(R\)-matching of the NNLL approximation to the fixed-order NNLO distribution.

MSC:
81V22 Unified quantum theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] ALEPH collaboration; Buskulic, D.; etal., Studies of QCD in \(e\)\^{+}\(e\)\^{−} → hadrons at \(E\)(cm) = 130 gev and 136 gev, Z. Phys., C 73, 409, (1997)
[2] ALEPH collaboration; Heister, A.; etal., Studies of QCD at \(e\)\^{+}\(e\)\^{−} centre-of-mass energies between 91 gev and 209 gev, Eur. Phys. J., C 35, 457, (2004)
[3] OPAL collaboration; Acton, PD; etal., A determination of \(α\)_{\(s\)}(M(Z0)) at LEP using resummed QCD calculations, Z. Phys., C 59, 1, (1993)
[4] OPAL collaboration; Alexander, G.; etal., QCD studies with \(e\)\^{+}\(e\)\^{−} annihilation data at 130 gev and 136 gev, Z. Phys., C 72, 191, (1996)
[5] OPAL collaboration; Ackerstaff, K.; etal., QCD studies with \(e\)\^{+}\(e\)\^{−} annihilation data at 161 gev, Z. Phys., C 75, 193, (1997)
[6] OPAL collaboration; Abbiendi, G.; etal., QCD studies with \(e\)\^{+}\(e\)\^{−} annihilation data at 172 gev to 189 gev, Eur. Phys. J., C 16, 185, (2000)
[7] OPAL collaboration; Abbiendi, G.; etal., Measurement of event shape distributions and moments in \(e\)\^{+}\(e\)\^{−} → hadrons at 91 gev - 209 gev and a determination of \(α\)_{\(s\)}, Eur. Phys. J., C 40, 287, (2005)
[8] OPAL collaboration; Abbiendi, G.; etal., Measurement of \(α\)_{\(s\)} with radiative hadronic events, Eur. Phys. J., C 53, 21, (2008)
[9] L3 collaboration; Acciarri, M.; etal., Study of the structure of hadronic events and determination of \(α\)_{\(s\)} at \( \sqrt {s} = 130 \) gev and 136 gev, Phys. Lett., B 371, 137, (1996)
[10] L3 collaboration; Acciarri, M.; etal., QCD studies and determination of \(α\)_{\(s\)} in \(e\)\^{+}\(e\)\^{−} collisions at \( \sqrt {s} = 161 \) gev and 172 gev, Phys. Lett., B 404, 390, (1997)
[11] L3 collaboration; Acciarri, M.; etal., QCD results from studies of hadronic events produced in \(e\)\^{+}\(e\)\^{−} annihilations at \( \sqrt {s} = 183 \) gev, Phys. Lett., B 444, 569, (1998)
[12] L3 collaboration; Achard, P.; etal., Determination of \(α\)_{\(s\)} from hadronic event shapes in \(e\)\^{+}\(e\)\^{−} annihilation at 192 gev ≤ \( \sqrt {s} \) ≤ 208 gev, Phys. Lett., B 536, 217, (2002)
[13] L3 collaboration; Achard, P.; etal., Studies of hadronic event structure in \(e\)\^{+}\(e\)\^{−} annihilation from 30 gev to 209 gev with the L3 detector, Phys. Rept., 399, 71, (2004)
[14] DELPHI collaboration; Abreu, P.; etal., Energy dependence of event shapes and of \(α\)_{\(s\)} at LEP-2, Phys. Lett., B 456, 322, (1999)
[15] DELPHI collaboration; Abdallah, J.; etal., A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, Eur. Phys. J., C 29, 285, (2003)
[16] DELPHI collaboration; Abdallah, J.; etal., The measurement of \(α\)_{\(s\)} from event shapes with the DELPHI detector at the highest LEP energies, Eur. Phys. J., C 37, 1, (2004)
[17] SLD collaboration; Abe, K.; etal., Measurement of \(α\)_{\(s\)}(\(M\)_{\(Z\)}\^{2}) from hadronic event observables at the \(Z\)\^{0} resonance, Phys. Rev., D 51, 962, (1995)
[18] JADE collaboration; Pfeifen Schneider, P.; etal., QCD analyses and determinations of \(α\)_{\(s\)} in \(e\)\^{+}\(e\)\^{−} annihilation at energies between 35-gev and 189-gev, Eur. Phys. J., C 17, 19, (2000)
[19] Brandt, S.; Peyrou, C.; Sosnowski, R.; Wroblewski, A., The principal axis of jets an attempt to analyze high-energy collisions as two-body processes, Phys. Lett., 12, 57, (1964)
[20] Farhi, E., A QCD test for jets, Phys. Rev. Lett., 39, 1587, (1977)
[21] Ellis, RK; Ross, DA; Terrano, AE, The perturbative calculation of jet structure in \(e\)\^{+}\(e\)\^{−} annihilation, Nucl. Phys., B 178, 421, (1981)
[22] Ellis, RK; Ross, DA; Terrano, AE, Calculation of event shape parameters in \(e\)\^{+}\(e\)\^{−} annihilation, Phys. Rev. Lett., 45, 1226, (1980)
[23] Kunszt, Z., Comment on the \(O\)(\(α\)_{\(S\)}\^{2}) corrections to jet production in \(e\)\^{+}\(e\)\^{−} annihilation, Phys. Lett., B 99, 429, (1981)
[24] Vermaseren, JAM; Gaemers, KJF; Oldham, SJ, Perturbative QCD calculation of jet cross-sections in \(e\)\^{+}\(e\)\^{−} annihilation, Nucl. Phys., B 187, 301, (1981)
[25] Fabricius, K.; Schmitt, I.; Kramer, G.; Schierholz, G., Higher order perturbative QCD calculation of jet cross-sections in \(e\)\^{+}\(e\)\^{−} annihilation, Zeit. Phys., C 11, 315, (1981)
[26] Z. Kunszt, P. Nason, G. Marchesini and B.R Webber, QCD at LEP, in Workshop on Z Physics at LEP1: General Meetings. Vol. 1: Standard Physics, CERN Yellow Report ETH-PT-89-39, p.373 [SPIRES].
[27] Giele, WT; Glover, EWN, Higher order corrections to jet cross-sections in \(e\)\^{+}\(e\)\^{−} annihilation, Phys. Rev., D 46, 1980, (1992)
[28] Catani, S.; Seymour, MH, The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order, Phys. Lett., B 378, 287, (1996)
[29] Catani, S.; Seymour, MH, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys., B 485, 291, (1997)
[30] Catani, S.; Trentadue, L.; Turnock, G.; Webber, BR, Resummation of large logarithms in \(e\)\^{+}\(e\)\^{−} event shape distributions, Nucl. Phys., B 407, 3, (1993)
[31] Dokshitzer, YL; Lucenti, A.; Marchesini, G.; Salam, GP, On the QCD analysis of jet broadening, JHEP, 01, 011, (1998)
[32] Banfi, A.; Salam, GP; Zanderighi, G., Semi-numerical resummation of event shapes, JHEP, 01, 018, (2002)
[33] Jones, RWL; Ford, M.; Salam, GP; Stenzel, H.; Wicke, D., Theoretical uncertainties on αs from event-shape variables in \(e\)\^{+}\(e\)\^{−} annihilations, JHEP, 12, 007, (2003)
[34] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[35] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Infrared structure of \(e\)\^{+}\(e\)\^{−} → \(3\) jets at NNLO, JHEP, 11, 058, (2007)
[36] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., NNLO corrections to event shapes in \(e\)\^{+}\(e\)\^{−} annihilation, JHEP, 12, 094, (2007)
[37] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett., 99, 132002, (2007)
[38] Weinzierl, S., The infrared structure of \(e\)\^{+}\(e\)\^{−} → \(3\) jets at NNLO reloaded, JHEP, 07, 009, (2009)
[39] Weinzierl, S., Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP, 06, 041, (2009)
[40] Weinzierl, S., Jet algorithms in electron-positron annihilation: perturbative higher order predictions, Eur. Phys. J., C 71, 1565, (2011)
[41] Denner, A.; Dittmaier, S.; Gehrmann, T.; Kurz, C., Electroweak corrections to three-jet production in electron-positron annihilation, Phys. Lett., B 679, 219, (2009)
[42] Denner, A.; Dittmaier, S.; Gehrmann, T.; Kurz, C., Electroweak corrections to hadronic event shapes and jet production in \(e\)\^{+}\(e\)\^{−} annihilation, Nucl. Phys., B 836, 37, (2010)
[43] Dissertori, G.; etal., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in \(e\)\^{+}\(e\)\^{−} annihilations, JHEP, 02, 040, (2008)
[44] Dissertori, G.; etal., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, Phys. Rev. Lett., 104, 072002, (2010)
[45] Gehrmann, T.; Jaquier, M.; Luisoni, G., Hadronization effects in event shape moments, Eur. Phys. J., C 67, 57, (2010)
[46] Gehrmann, T.; Luisoni, G.; Stenzel, H., Matching NLLA + NNLO for event shape distributions, Phys. Lett., B 664, 265, (2008)
[47] Davison, RA; Webber, BR, Non-perturbative contribution to the thrust distribution in \(e\)\^{+}\(e\)\^{−} annihilation, Eur. Phys. J., C 59, 13, (2009)
[48] JADE collaboration; Bethke, S.; Kluth, S.; Pahl, C.; Schieck, J., Determination of the strong coupling \(α\)_{\(s\)} from hadronic event shapes with \(O\)(\(α\)_{\(s\)}\^{3}) and resummed QCD predictions using JADE data, Eur. Phys. J., C 64, 351, (2009)
[49] Dissertori, G.; etal., Determination of the strong coupling constant using matched NNLO + NLLA predictions for hadronic event shapes in \(e\)\^{+}\(e\)\^{−} annihilations, JHEP, 08, 036, (2009)
[50] OPAL collaboration and others, Determination of α_{\(S\)}using OPAL hadronic event shapes at\( \sqrt {s} \) = 91-209 GeV and resummed NNLO calculations, arXiv:1101.1470 [SPIRES].
[51] Sterman, GF, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys., B 281, 310, (1987)
[52] Florian, D.; Grazzini, M., The back-to-back region in \(e\)\^{+}\(e\)\^{−} energy energy correlation, Nucl. Phys., B 704, 387, (2005)
[53] Bauer, CW; Pirjol, D.; Stewart, IW, Soft-collinear factorization in effective field theory, Phys. Rev., D 65, 054022, (2002)
[54] Bauer, CW; Fleming, S.; Pirjol, D.; Rothstein, IZ; Stewart, IW, Hard scattering factorization from effective field theory, Phys. Rev., D 66, 014017, (2002)
[55] Beneke, M.; Chapovsky, AP; Diehl, M.; Feldmann, T., Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys., B 643, 431, (2002)
[56] Schwartz, MD, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev., D 77, 014026, (2008)
[57] Fleming, S.; Hoang, AH; Mantry, S.; Stewart, IW, Jets from massive unstable particles: top-mass determination, Phys. Rev., D 77, 074010, (2008)
[58] Fleming, S.; Hoang, AH; Mantry, S.; Stewart, IW, Top jets in the peak region: factorization analysis with NLL resummation, Phys. Rev., D 77, 114003, (2008)
[59] Becher, T.; Schwartz, MD, A precise determination of \(α\)_{\(s\)} from LEP thrust data using effective field theory, JHEP, 07, 034, (2008)
[60] Abbate, R.; Fickinger, M.; Hoang, AH; Mateu, V.; Stewart, IW, Thrust at \(N\)\^{3}LL with power corrections and a precision global fit for alphas(mz), Phys. Rev., D 83, 074021, (2011)
[61] Chien, Y-T; Schwartz, MD, Resummation of heavy jet mass and comparison to LEP data, JHEP, 08, 058, (2010)
[62] J.-y.Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, arXiv:1104.0881 [SPIRES].
[63] T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, arXiv:1104.4108 [SPIRES].
[64] Moch, S.; Vermaseren, JAM; Vogt, A., The quark form factor at higher orders, JHEP, 08, 049, (2005)
[65] Baikov, PA; Chetyrkin, KG; Smirnov, AV; Smirnov, VA; Steinhauser, M., Quark and gluon form factors to three loops, Phys. Rev. Lett., 102, 212002, (2009)
[66] Lee, RN; Smirnov, AV; Smirnov, VA, Analytic results for massless three-loop form factors, JHEP, 04, 020, (2010)
[67] Gehrmann, T.; Glover, EWN; Huber, T.; Ikizlerli, N.; Studerus, C., Calculation of the quark and gluon form factors to three loops in QCD, JHEP, 06, 094, (2010)
[68] Becher, T.; Neubert, M., Toward a NNLO calculation of the \( \bar{B} → {X_s}γ \) decay rate with a cut on photon energy. II: two-loop result for the jet function, Phys. Lett., B 637, 251, (2006)
[69] Becher, T.; Neubert, M.; Pecjak, BD, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP, 01, 076, (2007)
[70] A.H. Hoang and S. Kluth, Hemisphere Soft Function at O(\(α\)_{\(s\)}\^{2}) for Dijet Production in e\^{+}\(e\)\^{−}Annihilation, arXiv:0806.3852 [SPIRES].
[71] R. Kelley, R.M. Schabinger, M.D. Schwartz and H.X. Zhu, The two-loop hemisphere soft function, arXiv:1105.3676 [SPIRES].
[72] A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the O(\(α\)_{\(s\)}\^{2}) Dijet Soft Function, arXiv:1105.4628 [SPIRES].
[73] Y. Li, S. Mantry and F. Petriello, An Exclusive Soft Function for Drell-Yan at Next-to-Next-to-Leading Order, arXiv:1105.5171 [SPIRES].
[74] Baikov, PA; Chetyrkin, KG; Kuhn, JH, Order \(α\)_{\(s\)}\^{4} QCD corrections to Z and \(τ\) decays, Phys. Rev. Lett., 101, 012002, (2008)
[75] J.C Collins, D.E. Soper and G. Sterman, in Perturbative Quantum Chromodynamics, A.H. Mueller eds., World Scientific, Singapore (1989).
[76] Berger, CF; Kucs, T.; Sterman, GF, Event shape/energy flow correlations, Phys. Rev., D 68, 014012, (2003)
[77] Berger, CF; Kucs, T.; Sterman, GF, Interjet energy flow/event shape correlations, Int. J. Mod. Phys., A 18, 4159, (2003)
[78] Korchemsky, GP; Sterman, GF, Infrared factorization in inclusive B meson decays, Phys. Lett., B 340, 96, (1994)
[79] Frenkel, J.; Taylor, JC, Non-abelian eikonal exponentiation, Nucl. Phys., B 246, 231, (1984)
[80] Gatheral, JGM, Exponentiation of eikonal cross sections in nonabelian gauge theories, Phys. Lett., B 133, 90, (1983)
[81] Catani, S.; Grazzini, M., The soft-gluon current at one-loop order, Nucl. Phys., B 591, 435, (2000)
[82] Huber, T.; Maître, D., Hypexp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun., 175, 122, (2006)
[83] Huber, T.; Maître, D., Hypexp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun., 178, 755, (2008)
[84] Carter, J.; Heinrich, G., Secdec: A general program for sector decomposition, Comput. Phys. Commun., 182, 1566, (2011)
[85] Heinrich, G., Sector decomposition, Int. J. Mod. Phys., A 23, 1457, (2008)
[86] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys., B 585, 741, (2000)
[87] Kawabata, S., A new version of the multidimensional integration and event generation package BASES/SPRING, Comp. Phys. Commun., 88, 309, (1995)
[88] Lepage, GP, A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978)
[89] Hahn, T., CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78, (2005)
[90] Catani, S.; Grazzini, M., Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys., B 570, 287, (2000)
[91] Korchemsky, GP; Marchesini, G., Resummation of large infrared corrections using Wilson loops, Phys. Lett., B 313, 433, (1993)
[92] Korchemsky, GP; Marchesini, G., Structure function for large x and renormalization of Wilson loop, Nucl. Phys., B 406, 225, (1993)
[93] Korchemskaya, IA; Korchemsky, GP, On lightlike Wilson loops, Phys. Lett., B 287, 169, (1992)
[94] Korchemsky, GP; Radyushkin, AV, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys., B 283, 342, (1987)
[95] Korchemsky, GP, Asymptotics of the altarelli-parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett., A 4, 1257, (1989)
[96] Altarelli, G.; Parisi, G., Asymptotic freedom in parton language, Nucl. Phys., B 126, 298, (1977)
[97] Vogt, A.; Moch, S.; Vermaseren, JAM, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys., B 691, 129, (2004)
[98] Moch, S.; Vermaseren, JAM; Vogt, A., The three-loop splitting functions in QCD: the non-singlet case, Nucl. Phys., B 688, 101, (2004)
[99] Catani, S.; Mangano, ML; Nason, P.; Trentadue, L., The resummation of soft gluon in hadronic collisions, Nucl. Phys., B 478, 273, (1996)
[100] T. Becher, private communication.
[101] Dokshitzer, YL; Marchesini, G.; Webber, BR, Dispersive approach to power-behaved contributions in QCD hard processes, Nucl. Phys., B 469, 93, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.