zbMATH — the first resource for mathematics

Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions. (English) Zbl 1305.82058
Summary: For the generalized Fermi-Dirac integrals, \(F_k({\eta},{\beta})\), of orders \(k=-1/2, 1/2, 3/2\), and \(5/2\), we explicitly obtained the first 11 terms of their Sommerfeld expansions. The main terms of the last three orders are rewritten so as to avoid the cancelation problem. If \({\eta}\) is not so small, say not less than 13.5, 12.0, 10.9, and 9.9 when \(k=-1/2, 1/2, 3/2\), and \(5/2\), respectively, the first 8 terms of the expansion assure the single precision accuracy for arbitrary value of \({\beta}\). Similarly, the 15-digits accuracy is achieved by the 11 terms expansion if \({\eta}\) is greater than 36.8, 31.6, 30.7, and 26.6 when \(k=-1/2, 1/2, 3/2\), and \(5/2\), respectively. Since the truncated expansions are analytically given in a closed form, their computational time is sufficiently small, say at most 4.9 and 6.7 times that of the integrand evaluation for the 8- and 11-terms expansions, respectively. When \({\eta}\) is larger than a certain threshold value as indicated, these appropriately-truncated Sommerfeld expansions provide a factor of 10-80 acceleration of the computation of the generalized Fermi-Dirac integrals when compared with the direct numerical quadrature.

82D20 Statistical mechanical studies of solids
65D30 Numerical integration
Full Text: DOI
[1] Weiss, A.; Hildebrandt, W.; Thomas, H.-C.; Ritter, H., Cox and giuli’s principles of stellar structure, (2006), Cambridge Sci. Publ. Cambridge
[2] Ashcroft, N. W.; Mermin, N. D., Solid state physics, (1976), Holt, Rinehalt, and Winston Dumfries · Zbl 1118.82001
[3] Blakemore, J. S., Approximations for Fermi-Dirac integrals, especially the function \(\mathcal{F}_{1 / 2}(\eta)\) used to describe electron density in a semiconductor, Solid-State Electron., 25, 1067-1076, (1982)
[4] Blinnikov, S. I.; Rudzskii, M. A., Emission of annihilation nutrinos in dense stellar mater, Sov. Astron., 33, 377-380, (1989)
[5] Bisnovatyi-Kogan, G. S., Stellar physics 1: fundamental concepts and stellar equilibrium, (2001), Springer Berlin, (A.Y. Blinov, M. Romanova, transl., orig. Russian ed., Nauka, Moscow, 1989) · Zbl 1209.85001
[6] Chandrasekhar, S., An introduction to the study of stellar structure, (1939), Univ. Chicago Press Chicago, (Reprint, Dover Publ., New York, 1958) · Zbl 0022.19207
[7] Odrzywolek, A., Gaussian integration with rescaling of abscissas and weights, Comput. Phys. Commun., 182, 2533-2539, (2011) · Zbl 1261.65027
[8] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes: the art of scientific computing, (2007), Cambridge Univ. Press Cambridge · Zbl 1132.65001
[9] Aparicio, J. M., A simple and accurate method for the calculation of generalized Fermi functions, Astrophys. J., Suppl. Ser., 117, 627-632, (1998)
[10] Macleod, A. J., Algorithm 779: Fermi-Dirac functions of order −1/2, 1/2, 3/2, 5/2, ACM Trans. Math. Software, 24, 1-12, (1998) · Zbl 0917.65017
[11] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions, (2010), Cambridge Univ. Press Cambridge) · Zbl 1198.00002
[12] McDougall, J.; Stoner, E. C., The computation of Fermi-Dirac functions, Philos. Trans. R. Soc. Lond., Ser. A., Math. Phys. Sci., 237, 67-104, (1938) · JFM 64.1500.04
[13] Cloutman, L. D., Numerical evaluation of the Fermi-Dirac integrals, Astrophys. J., Suppl. Ser., 71, 677-699, (1989)
[14] Rhodes, P., Fermi-Dirac functions of integral order, Proc. R. Soc. Lond., Ser. A., Math. Phys. Sci., 204, 396-405, (1950) · Zbl 0038.41703
[15] Blinnikov, S. I.; Dunina-Barkovskaya, N. V.; Nadyozhin, D. K., Equation of state of a Fermi gas: approximations for various degrees of relativism and degeneracy, Astrophys. J., Suppl. Ser., 106, 171-203, (1996)
[16] Pichon, B., Numerical calculation of the generalized Fermi-Dirac integrals, Comput. Phys. Commun., 55, 127-136, (1989)
[17] Johns, S. M.; Ellis, P. J.; Lattimer, J. M., Numerical approximation to the thermodynamic integrals, Astrophys. J., 473, 1020-1028, (1996)
[18] Bhagat, V.; Bhattacharya, R.; Roy, D., On the evaluation of generalized Bose-Einstein and Fermi-Dirac integrals, Comput. Phys. Commun., 155, 7-20, (2003)
[19] Sagar, R. P., A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals, Comput. Phys. Commun., 66, 271-275, (1991) · Zbl 0997.65520
[20] Gautschi, W., Generalized Fermi-Dirac functions and derivatives: properties and evaluation, Comput. Phys. Commun., 74, 233-309, (1993)
[21] Natarajan, A.; Mohankumar, N., On the numerical evaluation of the generalized Fermi-Dirac integrals, Comput. Phys. Commun., 76, 48-50, (1993) · Zbl 0855.65012
[22] Mohankumar, N.; Natarajan, A., A note on the evaluation of the generalized Fermi-Dirac integral, Astrophys. J., 458, 233-235, (1996)
[23] Natarajan, A.; Mohankumar, N., An accurate method for the generalized Fermi-Dirac integral, Comput. Phys. Commun., 137, 361-365, (2001) · Zbl 0985.65012
[24] Gong, Z.; Zejda, L.; Dappen, W.; Aparicio, J. M., Generalized Fermi-Dirac functions and derivatives: properties and evaluation, Comput. Phys. Commun., 136, 294-309, (2001) · Zbl 0985.85002
[25] Piessens, R.; de Doncker-Kapenga, E.; Überhuber, C.; Kahaner, D., QUADPACK, A subroutine package for automatic integration, (1983), Springer New York · Zbl 0508.65005
[26] T. Ooura, Numerical Integration (Quadrature) - DE Formula (Almighty Quadrature). <^∼>. · Zbl 1132.65015
[27] Takahashi, H.; Mori, H., Double exponential formulas for numerical integration, Publ. RIMS, Kyoto Univ., 9, 721-741, (1974) · Zbl 0293.65011
[28] Sommerfeld, A., Zur elektronentheorie der metalle auf grund der fermischen statistik. I. teil: allgemeines, strömungs und austrittsvorgänge, Zeitschrift für Physik, 47, 1-32, (1928) · JFM 54.0987.06
[29] Dingle, R., The Fermi-Dirac integrals \(\mathcal{F}_p(\eta) = (p!)^{- 1}\)\(\int_0^\infty \varepsilon^p\)\((e^{\varepsilon - \eta} + 1)\)\(d \varepsilon\), Appl. Sci. Res., 6, 225-239, (1957) · Zbl 0077.23704
[30] Gilham, C. W., The approximate value of an integral occurring in Fermi-Dirac statistics, Proc. Leeds Philos. Soc., 3, 117-119, (1936) · JFM 62.0640.04
[31] Wolfram, S., The Mathematica book, (2003), Wolfram Research Inc./Cambridge Univ. Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.