Gérard, C.; Sjöstrand, J. Semiclassical resonances generated by a closed trajectory of hyperbolic type. (English) Zbl 0637.35027 Commun. Math. Phys. 108, 391-421 (1987). Authors’ summary: All the resonances in certain rectangular regions of the complex plane of the Schrödinger operator \(-h^ 2\Delta +V\) when \(h\to 0\) (and more general semiclassical operators) are determined under the assumption that the set of trapped points of energy 0 for the classical flow form a closed trajectory and that the corresponding Poincaré map is hyperbolic. Reviewer: G.Derfel Cited in 1 ReviewCited in 46 Documents MSC: 35J10 Schrödinger operator, Schrödinger equation 35S05 Pseudodifferential operators as generalizations of partial differential operators 37-XX Dynamical systems and ergodic theory Keywords:resonances; rectangular regions; complex plane; Schrödinger operator; semiclassical operators; trapped points of energy 0; Poincaré map × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Abraham, R., Marsden, J.: Foundations of mechanics. New York: Benjamin/Cummings 1978 · Zbl 0393.70001 [2] Boutet de Monvel, L., Grigis, A., Helffer, B.: Parametrixes d’opérateurs pseudodifferentiels à caractéristiques multiples. Astérisque34-35, 93-121 (1976) · Zbl 0344.32009 [3] Cordoba, A., Fefferman, C.: Wavepackets and Fourier integral operators. Commun. Partial Differ. Equations3, 979-1005 (1978) · Zbl 0389.35046 · doi:10.1080/03605307808820083 [4] Gérard, C.: Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes (preprint) · Zbl 0654.35081 [5] Guillope, L.: Private communication [6] Helffer, B., Sjöstrand, J.: Résonances en limite semi-classique. Mémoire de la S.M.F., n{\(\deg\)} 24/25, Suppl. an Bull. de la S.M.F., 114 (1986), fasc. 3 · Zbl 0631.35075 [7] Ikawa, M.: On the poles of the scattering matrix for two convex obstacles. J. Math. Kyoto Univ.23, 127-194 (1983). An addendum in J. Math. Kyoto Univ.23, 795-802 (1983) · Zbl 0561.35060 [8] Ikawa, M.: Precise information on the poles of the scattering matrix for two strictly convex obstacles. Preprint, also in the proceedings of the Journées des E.D.P. at St. Jean de Monts, 1985 · Zbl 0587.35057 [9] Melin, A., Sjöstrand, J.: Fourier integral operators with complex valued phase functions. Lecture Notes in Mathematics, Vol. 459. Berlin, Heidelberg, New York: Springer, pp. 120-223 · Zbl 0306.42007 [10] Reed, M., Simon, B.: Methods of modern mathematical physics, I?IV. New York: Academic Press, pp. 1974-82 [11] Sjöstrand, J.: Analytic wavefront sets and operators with multiple characteristics. Hokkaido Math. J.12, 392-433 (1983) · Zbl 0531.35022 [12] Sjöstrand, J.: Parametrices for pseudodifferential operators with multiple characteristics. Ark. Math.12, 85-120 (1974) · Zbl 0317.35076 · doi:10.1007/BF02384749 [13] Sjöstrand, J.: Singularités analytiques microlocales. Astérisque95 (1982) [14] Sjöstrand, J.: Semiclassical resonances generated by non-degenerated critical points. Preprint of the University of Lund (1986) · Zbl 0609.35069 [15] Ralston, J.V.: On the construction of quasimodes associated with stable periodic orbits. Commun. Math. Phys.51, 219-242 (1976) · Zbl 0333.35066 · doi:10.1007/BF01617921 [16] Colin de Verdière, Y.: Quasimodes sur les variétés riemanniennes. Invent. Math.43, 15-52 (1977) · Zbl 0449.53040 · doi:10.1007/BF01390202 [17] Candelpergher, B., Nosmas, J.C.: Quantification et approximations semiclassiques. Colloque de Saint Jean de Monts (1982) · Zbl 0497.58023 [18] Voros, A.: The W.K.B. method for non-separable systems. Actes du congrès international de géométrie symplectique et physique mathématique, Aix (1974) [19] Duistermaat, J.J.: Oscillatory integrals, lagrangian immersions and unfolding of singularities. Commun. Pure Appl. Math.27, 207-281 (1974) · Zbl 0285.35010 · doi:10.1002/cpa.3160270205 [20] Pollak, E.: A quasiclassical model for resonance widths in quantal colinear reactive scattering. J. Chem. Phys.76, 5843-5848 (1982) · doi:10.1063/1.442983 [21] Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys.12, 343-358 (1971) · doi:10.1063/1.1665596 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.