Janyszek, Henryk On the Riemannian metrical structure in the classical statistical equilibrium thermodynamics. (English) Zbl 0637.53085 Rep. Math. Phys. 24, No. 1, 1-10 (1986). The main purpose of this paper is to find a correspondence between the metric structures (Riemannian structure) arising in a natural way in statistical equilibrium physics and metric structures on the (phenomenological) thermodynamical surfaces. A geometrical analysis of Gibbs states presented in the logarithmic scale is done. This paper is restricted to the description of an ideal gas composed of n non- interacting particles in connection with the Boguslavski distribution. Reviewer: M.Wodarzik Cited in 1 ReviewCited in 4 Documents MSC: 53B50 Applications of local differential geometry to the sciences 82B05 Classical equilibrium statistical mechanics (general) 82B30 Statistical thermodynamics Keywords:statistical thermodynamics; Gibbs states; ideal gas; Boguslavski distribution PDF BibTeX XML Cite \textit{H. Janyszek}, Rep. Math. Phys. 24, No. 1, 1--10 (1986; Zbl 0637.53085) Full Text: DOI References: [1] Ingarden, R. S., Tensor, N.S.30, 201 (1976) [2] Ingarden, R. S.; Sato, Y.; Sugawa, K.; Kawaguchi, M., Tensor, N.S.33, 347 (1979) [3] Ingarden, R. S.; Kawaguchi, M.; Sato, Y., Tensor, N.S.39, 267 (1982) [4] Sato, Y.; Sugawa, K.; Kawaguchi, M., Rep. Math. Phys., 16, 111 (1979) [5] Ingarden, R. S.; Janyszek, H., Tensor, N.S.39, 279 (1982) [6] Ingarden, R. S.; Janyszek, H.; Kossakowski, A.; Kawaguchi, T., Tensor, N.S.37, 105 (1982) [7] Ingarden, R. S., Inter. J. Enging. Sci., 19, 12, 1609 (1981) [8] Mrugala, R., Physica, 125A, 631 (1984) [9] Kullback, S., Information Theory and Statistics (1959), Wiley: Wiley New York · Zbl 0149.37901 [10] Chentzov, N. N., Statistical Decision Rules and Optimal Inference (1970), Nauka: Nauka Moscov, (in Russian) [11] Boguslavski, S. A., Izbrannye trudy po fizike (1961), Moskva · Zbl 0098.36907 [12] Rashevski, P. K., Kurs differentialnoi geometrii (1939), Moskva This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.