zbMATH — the first resource for mathematics

Minoration en temps petit de la densité d’une diffusion dégénérée. (Lower estimate for small times of the density of a degenerate diffusion). (French) Zbl 0637.58034
Let the diffusion on R d be given by the Stratonovich stochastic differential equation \(dx_ t=\sum X_ i(x_ t)dw_ i\), the Lie algebra of vector fields \(X_ i\) at each point is equal to R d. The author proves that the density \(p_ t(x,y)\) of \(x_ t\) satisfies the inequality \[ \underline{\lim}_{t\to 0}2t \log P_ t(x,y)\geq -d^ 2(x,y) \] where d denotes a semi-Riemannian metric associated to the generator of diffusion.
Reviewer: S.Eloshvili

58J65 Diffusion processes and stochastic analysis on manifolds
60G60 Random fields
Full Text: DOI
[1] Azencott, R, Grandes déviations et applications, cours de probabilité de saint-flour, () · Zbl 0435.60028
[2] Azencott, R; Altri, Géodésiques et diffusions en temps petit, Astérisque, 84-85, (1981)
[3] Bismut, J.M, Large deviations and the Malliavin calculus, () · Zbl 0537.35003
[4] Bismut, J.M, Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s condition, Z. wahrsch. verw. gebiete, 56, 469-505, (1981) · Zbl 0445.60049
[5] Bismut, J.M, Mécanique aléatoire, () · Zbl 0528.60048
[6] \scH. Doss, Démonstration probabiliste de certains développements asymptotiques quasi-classiques, à paraître.
[7] Gaveau, B, Principle de moindre action et propagation de la chaleur sur LES groupes nilpotents, Acta math., (1977) · Zbl 0366.22010
[8] Gaveau, B, Bull. sci. math., (1979)
[9] Hörmander, L, Hypoelliptic second order differential equations, Acta math., 119, 147-171, (1969) · Zbl 0156.10701
[10] Kusuoka, S; Stroock, D, Applications of the Malliavin calculus, I, () · Zbl 0568.60059
[11] \scS. Kusuoka et D. Stroock, Applications of the Malliavin calculus, II, à paraître. · Zbl 0568.60059
[12] \scR. Léandre, Majoration de la densité d’une diffusion dégénérée, à paraître.
[13] \scR. Léandre, Estimation en temps petit de la densité d’une diffusion dégénérée, à paraître aux CRAS.
[14] \scR. Léandre, Renormalisation et calcul des variations stochastiques, à paraître aux CRAS. · Zbl 0604.60049
[15] Rothschild, L.P; Stein, E.M, Hypoelliptic differential operators and nilpotent groups, Acta math., 137, 247-320, (1976) · Zbl 0346.35030
[16] Sanchez-Calle, A, Fundamental solution and geometry of the sum of squares of vector fields, Invent. math., 78, 143-160, (1984) · Zbl 0582.58004
[17] Varadhan, S.R.S, Asymptotic probabilities and differential equations, Comm. pure appl. math., 19, 261-286, (1966) · Zbl 0147.15503
[18] \scJ. Jerison et A. Sanchez, Estimates for the heat kernel for the sum of squares of vector fields, à paraître. · Zbl 0639.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.