Hall, Peter; Marron, J. S. Variable window width kernel estimates of probability densities. (English) Zbl 0637.62036 Probab. Theory Relat. Fields 80, No. 1, 37-49 (1988). Kernel density estimators which allow different amounts of smoothing at different locations are studied. Modifications of estimators proposed by L. Breiman, W. Meisel and E. Purcell [Technometrics 19, 135-144 (1977; Zbl 0379.62023)] and I. S. Abramson [Ann. Stat. 10, 1217-1223 (1982; Zbl 0507.62040)], which have variable window widths, are seen to have very fast rates of convergence. These rates have traditionally been obtained using a less natural higher order kernel, which has the disadvantage of allowing an estimator which takes on negative values. Reviewer: P.Hall Cited in 1 ReviewCited in 33 Documents MSC: 62G05 Nonparametric estimation 62E20 Asymptotic distribution theory in statistics Keywords:kernel density estimators; smoothing at different locations; variable window widths; fast rates of convergence PDF BibTeX XML Cite \textit{P. Hall} and \textit{J. S. Marron}, Probab. Theory Relat. Fields 80, No. 1, 37--49 (1988; Zbl 0637.62036) Full Text: DOI References: [1] Abramson, I.S.: On bandwidth variation in kernel estimates ? a square root law. Ann. Stat. 10, 1217-1223 (1982a) · Zbl 0507.62040 · doi:10.1214/aos/1176345986 [2] Abramson, I.S.: Arbitrariness of the pilot estimator in adaptive kernel methods. J. Multivariate Anal. 12, 562-567 (1982b) · Zbl 0515.62032 · doi:10.1016/0047-259X(82)90063-X [3] Breiman, L., Meisel, W., Purcell, E.: Variable kernel estimates of probability densities. Technometrics 19, 135-144 (1977) · Zbl 0379.62023 · doi:10.2307/1268623 [4] Hall, P.: On near neighbour estimates of a multivariate density. J. Multivariate Anal. 13, 24-39 (1983) · Zbl 0514.62048 · doi:10.1016/0047-259X(83)90003-9 [5] Hall, P., Heyde, C.C.: Martingale limit theory and its application. Academic Press, New York 1980 · Zbl 0462.60045 [6] Krieger, A.M., Pickands, J. III: Weak convergence and efficient density estimation at a point. Ann. Stat. 9, 1066-1078 (1981) · Zbl 0478.62027 · doi:10.1214/aos/1176345586 [7] Mack, Y.P., Rosenblatt, M.: Multivariate k-nearest neighbor density estimates. J. Multivariate Anal. 9, 1-15 (1979) · Zbl 0406.62023 · doi:10.1016/0047-259X(79)90065-4 [8] Prakasa Rao, B.L.S.: Nonparametric functional estimation. Academic Press, New York 1983 · Zbl 0542.62025 [9] Silverman, B.W.: Density estimation for statistics and data analysis. Chapman and Hall, London 1986 · Zbl 0617.62042 [10] Terrell, G.R., Scott, D.W.: On improving convergence rates for nonnegative kernel density estimators. Ann. Stat. 8, 1160-1163 (1980) · Zbl 0459.62031 · doi:10.1214/aos/1176345153 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.