zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on a diagonally implicit Runge-Kutta-Nyström method. (English) Zbl 0637.65065
For the numerical integration of the special second-order initial value problem $y''=f(t,y),\quad y(t\sb 0)=y\sb 0,\quad y'(t\sb 0)=y\sb 0'$ it is often advantageous applying a direct method for this type of differential equations, rather than rewriting that to its first-order form. Fourth-order accurate diagonally implicit (or semi-explicit) Runge- Kutta-Nyström methods with only 2 stages are shown can be obtained. The scheme is given with the largest interval (0,12) of periodicity, and the requirement of P-stability decreases the order to 2.
Reviewer: L.M.Berkovich

65L05Initial value problems for ODE (numerical methods)
65L20Stability and convergence of numerical methods for ODE
34A34Nonlinear ODE and systems, general
Full Text: DOI
[1] Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff odes. SIAM J. Numer. anal. 14, 1006-1021 (1977) · Zbl 0374.65038
[2] Butcher, J. C.: Implicit Runge-Kutta processes. Math. comp. 18, 50-64 (1964) · Zbl 0123.11701
[3] Hairer, E.; Wanner, G.: A theory for Nyström methods. Numer. math. 25, 383-400 (1976) · Zbl 0307.65053
[4] Hairer, E.: Méthodes de Nyström pour l’equation différentielle y” = $f(x, y)$. Numer. math. 27, 283-300 (1977) · Zbl 0325.65033
[5] Hairer, E.: Unconditionally stable methods for second order differential equations. Numer. math. 32, 373-379 (1979) · Zbl 0393.65035
[6] Van Der Houwen, P. J.; Sommeijer, B. P.: Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems. Report NM-R8704 (1987) · Zbl 0676.65072
[7] Lambert, J. D.; Watson, I. A.: Symmetric multistep methods for periodic initial value problems. J. inst. Maths. applics. 18, 189-202 (1976) · Zbl 0359.65060
[8] Nørsett, S. P.: Semi-explicit Runge-Kutta methods. Report math. And comp. No. 6/74 (1974) · Zbl 0278.65078
[9] Stiefel, E.; Bettis, D. G.: Stabilization of cowell’s method. Numer. math. 13, 154-175 (1969) · Zbl 0219.65062