×

zbMATH — the first resource for mathematics

An adaptive method for linear parabolic differential equations. (English) Zbl 0637.65118
Using the Euler backward formula, a one-dimensional parabolic equation is first discretized in the spirit of Rothe. The resulting elliptic equation is then approximated using linear elements. The error of the Rothe step is estimated by measuring the defect of the solution inserted into the Crank-Nicolson formula, the error of the spatial discretization by inserting the solution into a finer discretization. On this basis, applying the principle of equidistributing the defects, time steps and spatial steps are chosen (independently from each other) in an adaptive manner. A numerical example illustrates the adequateness of the proposed step selection algorithm. For a considerable part of the theoretical background the author refers to his thesis.
Reviewer: G.Stoyan

MSC:
65N40 Method of lines for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babuška, Math. Comput. 33 pp 435– (1979)
[2] Babuška, SIAM J. Numer. Anal. 15 pp 736– (1978)
[3] Babuška, Int. J. Numer. Math. in Engg. 12 pp 1597– (1978)
[4] Babuška, Comput. Meth. in Appl. Mech. and Engg. 34 pp 895– (1982)
[5] Bieterman, Numer. Math. 40 pp 339– (1982)
[6] Carey, Comput. Meth. in Appl. Mech. and Engg. 17/18 pp 541– (1979)
[7] Estimation of errors and derivatives in ODE’s, Inf. Proc. 74, North Holland Publ. Co. 1974, pp. 447–451.
[8] Gear, SIAM J. Numer. Anal. 11 pp 1025– (1974)
[9] Griepentrog, Wiss. Z. Humboldt-Univ. Berlin, Math. Nat. Reihe pp 637– (1970)
[10] Numerik gewöhnlicher Differentialgleichungen. Band 1: Einschrittverfahren, B. G. Teubner Stuttgart 1972; Band 2: Mehrschrittverfahren, B. G. Teubner Stuttgart 1977.
[11] Lentini, SIAM J. Numer. Anal. 14 pp 91– (1977)
[12] Lippold, ZAMM 60 pp 459– (1980)
[13] Lippold, ZAMM 62 pp 435– (1982)
[14] Schätzung von Diskretisierungsfehlern durch Defekte in genaueren Gleichungen, ZfR-Informationen, ZfR 82.17, ZfR 82.18, ZfR 82.19, 1982.
[15] ; , Ein Programmpaket zur Lösung von Anfangswertaufgaben für Systeme expliziter gewöhnlicher Differentialgleichungen, ZfR-Informationen, ZfR 80.09, 1980.
[16] [Russian Text Ignored.] [Russian Text Ignored.] 1981.
[17] Pereyra, Numer. Math. 23 pp 261– (1975)
[18] Reiher, Wiss. Z. Humboldt-Univ. Berlin, Seminarberiehte der Sektion Mathematik 46 pp 151– (1982)
[19] Reiher, Tagungsberichte der Martin Luther Universitaät Halle 24 pp 98– (1984)
[20] Ein adaptives Verfahren zur Lösung einer linearen parabolischen Differentialgleichung in einer Raumdimension, Diss. A, Humboldt-Universität zu Berlin 1985.
[21] Rheinboldt, SIAM J. Numer. Anal. 17 pp 766– (1980)
[22] Rothe, Math. Ann. 102 pp 650– (1927)
[23] Vorlesungen über nichtlineare Funktionalanalysis. Band II: Monotone Operatoren, Teubner Texte zur Mathematik, Leipzig 1977.
[24] Funktionalanalysis der Diskretisierungsmethoden, Teubner Texte zur Mathematik, Leipzig 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.