zbMATH — the first resource for mathematics

A derivation of generalized Saint Venant’s torsion theory from three- dimensional elasticity by asymptotic expansion methods. (English) Zbl 0637.73003
In this work we obtain a generalization and a justification of Saint Venant’s torsion theory in beams by applying the asymptotic expansion method to the Hellinger-Reissner variational formulation of the three- dimensional linearized elasticity model.

74B99 Elastic materials
74G50 Saint-Venant’s principle
74S30 Other numerical methods in solid mechanics (MSC2010)
74B05 Classical linear elasticity
Full Text: DOI
[1] Necas J., Mathematical Theoru of Elastic and Elastico-Plastic Bodies: An Introduction (1981) · Zbl 0448.73009
[2] Cimetiere, A., Geymonat, G., LEDRET, H., RAOULT, A. and TUTEK, Z. 1986.Une derivation d’un modele non lineaire de poutres a partir de Telasticite tridimensionelle, 697–700. C. R. Acad. Sc. Paris.
[3] Brezzi, F. 1974.On the existence, uniqueness and approximation of saddle - point problems arising from Lagrange multipliers, 129–151. RAIRO Numer. Anal. · Zbl 0338.90047
[4] Bermudez, A. and Viano, J. M. 1984.Une justification des equations de lathermo -elasticity des poutres a section variable par des methodes asymptotiques, 347–376. RAIRO Numer. Anal. · Zbl 0572.73053
[5] Trabucho, L. and Viano, J. M. 1987.Derivation of generalized models for linear elastic beams by asymptotic expansion methods. In Applications of Multiple Scalinna in Mechanics, 302–315. Masson: (P.G. CIARLET and E. SANCHEZ-PALENCIA, Editors).
[6] Trabucho, L. and Viano, J. M. 1987.Derivation de modeles generalises de poutres en elasticite par methode asymptotique, 303–306. Paris: C. R. Acad. Sc.
[7] Trabucho L., Existence and characterization of higher order terms in an asymptotic expansion method for linearized elastic beams · Zbl 0850.73126
[8] Lions J. L., Perturbations sinaulieres dans les oroblemes aux limites et en controle optimal. Lect. Notes in Math. 323 (1973)
[9] Caillerie, D. 1980.The effect of a thin inclusion of high rigidity in a elastic body. Math. Methods in Applied Sci. 2251–270. · Zbl 0446.73014
[10] Ciarlet, P. G. and Destuynder, P. 1979.A justification of the two dimensional linear plate model, 315–344. J. Mecanique. · Zbl 0415.73072
[11] Ciarlet, P. G. and Destuynder, P. 1979.A justification of a nonlinear model in plate theory, 227–258. Comp. Methods Appl. Mech. Enara. · Zbl 0405.73050
[12] Ciarlet, P. G. 1980.A justification of the von Karman equations, 349–389. Arch. Rat. Mech. twLJZ. · Zbl 0443.73034
[13] Ciarlet, P. G. 1987.Recent progress in the two-dimensional approximation of three - dimensional plate models in nonlinear elasticity. In Numerical Approximation Qf Partial Differential Equations, 3–19. North Holland: (E.L ORTIZ, Editor). · Zbl 0612.73060
[14] Destuynder P., Sur une justification des modeles de plaques et de coques par les methodes asymptotiques. These d’Etat Univ (1980)
[15] Destuynder P., Une theorie asumptotique des plaques minces en elasticite lineaire (1986)
[16] Raoult, A. 1985.Construction d’un modele devolution de plaques avec terme d’inertie de rotation, 361–400. Annali di Matematica Pura ad Applicata. · Zbl 0596.73033
[17] Viano J. M., Contribution a Vetude des modeles bidimensionels en thermoelasticite de plaques d’epaisseur non constante. These Troisieme Cycle. Univ (1983)
[18] Rigolot A., Sur une theorie asymptotique des poutres. These de Doctorat d’Etat. Univ (1976) · Zbl 0257.73013
[19] Rigolot, A. 172.Sur une theorie asymptotique des poutres, 673–703. J. Mecanique. · Zbl 0257.73013
[20] Tutek, Z. and Aganovic, I. 1986.A justification of the one-dimensional model of elastic beam. Math. Methods in Applied Sci. 8502–515.
[21] Viano J. M., Generalizacion y justificacion de modeios unilaterales en vigas elasticas sobre fundacion (1985)
[22] Trabucho L., A new approach of Timoshenko’s beam theory by asymptotic expansion method · Zbl 0777.73028
[23] Trabucho L., Asymptotic derivation of Vlasov’s theory in elastic beams.To appear
[24] Fraejis de veubeke B. M., A course in elasticity Applied Mathematical Sciences 29 (1979)
[25] Sokolnikoff I. S., The mathematical theoru of elasticity (1956) · Zbl 0070.41104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.