×

zbMATH — the first resource for mathematics

Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. (English) Zbl 0637.76024
The Lagrange-Galerkin method is a numerical technique for solving convection-dominated diffusion problems, based on combining a special discretization of the Lagrangian material derivative along particle trajectories with the Galerkin finite element method. In this paper optimal error estimates are presented for the Lagrange-Galerkin mixed finite element approximation of the Navier-Stokes equations in a velocity/pressure formulation. The method is shown to be nonlinearly stable.
Reviewer: E.Süli

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adams, R.A.: Sobolev spaces, New York: Academic Press 1975 · Zbl 0314.46030
[2] Benqué, J.P., Labadie, G., Ronat, J.: A new finite element method for Navier-Stokes equations coupled with a temperature equation. In: T. Kawai (ed.) Proc. 4th Int. Symp. on finite element methods in flow problems, pp. 295-302. Amsterdam: North-Holland 1982 · Zbl 0508.76049
[3] Bercovier, M., Pironneau, O.: Characteristics and the finite element method. In: T. Kawai (ed.) Proc. 4th Int. Symp. On finite element methods in flow problems, pp. 67-73. Amsterdam. North-Holland 1982 · Zbl 0508.76007
[4] Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput.44, 71-80 (1985) · Zbl 0563.65075 · doi:10.1090/S0025-5718-1985-0771031-7
[5] Chorin, A.J., Marsden, J.E.: A Mathematical introduction to fluid mechanics. Berlin Heidelberg New York: Springer 1984 · Zbl 0417.76002
[6] Ciarlet, P.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978 · Zbl 0383.65058
[7] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér7, 33-76 (1973) · Zbl 0302.65087
[8] Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal.19, 871-885 (1982) · Zbl 0492.65051 · doi:10.1137/0719063
[9] Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969 · Zbl 0176.00801
[10] Fortin, M.: Old and new elements for incompressible flows. Int. J. Numer. Methods Fluids1, 347-364 (1981) · Zbl 0467.76030 · doi:10.1002/fld.1650010406
[11] Girault, V., Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations. Lect. Notes Math. 749. Berlin Heidelberg New York: Springer 1979 · Zbl 0413.65081
[12] Grisvard, P.: Singularitè des solutions du problème de Stokes dans un polygone. Publications de l’Université de Nice 1978
[13] Hasbani, Y., Livne, E., Bercovier, M.: Finite elements and characteristics applied to advectiondiffusion equations. Comput. Fluids11, 71-83 (1983) · Zbl 0511.76089 · doi:10.1016/0045-7930(83)90002-6
[14] Heywood, J.G.: The Navier-Stokes equations: on existence, regularity and decay of solutions. Indiana Univ Math. J.29, 639-681 (1980) · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048
[15] Lefschetz, S.: Differential equations: Geometric theory: New York: Dover Publications 1977 · Zbl 0080.06401
[16] López-Marcos, J.C., Sanz-Serna, J.M.: Stability and convergence in numerical analysis III: Linear investigation of nonlinear stability. IMA J. Numer. Anal.8, 71-84 (1987) · Zbl 0695.65042 · doi:10.1093/imanum/8.1.71
[17] Mansfield, L.: Finite element subspaces with optimal rates of convergence for the stationary Stokes problem. RAIRO Anal. Numér.16, 49-66 (1982) · Zbl 0477.65084
[18] Maz’ya, V.G.: Sobolev spaces. Berlin Heidelberg New York: Springer 1985
[19] Morton, K. W., Priestley, A., Süli, E.: Convergence analysis of the Lagrange-Galerkin method with non-exact integration. Oxford University Computing Laboratory Report. No 86/14 (1986) · Zbl 0661.65114
[20] Pironneau, O.: On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math.38, 309-332 (1982) · Zbl 0505.76100 · doi:10.1007/BF01396435
[21] Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. Ph.D. Thesis. University of Chicago 1980
[22] Stenberg, R.: Analysis of some mixed finite elements methods for the Stokes problem: A unified approach. Math. Comput.42, 9-23 (1984) · Zbl 0535.76037
[23] Stenberg, R.: On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Engrg.63, 261-269 (1987) · Zbl 0684.73036 · doi:10.1016/0045-7825(87)90072-7
[24] Süli, E.: Lagrange-Galerkin mixed finite element approximation of the Navier-Stokes equations. In: K.W. Morton, M.J. Baines (eds.), Numerical methods for fluid dynamics, pp. 439-448. Oxford University Press (1985)
[25] Süli, E.: Convergence analysis of the Lagrange-Galerkin method for the Navier-Stokes equations. Oxford University Computing Laboratory Report. No 86/3 (1986)
[26] Süli, E.: Stability and convergence of the Lagrange-Galerkin method with non-exact integration. In: J.R. Whiteman (ed.) The mathematics of finite elements and applications, pp. 435-442. New York: Academic Press (1988)
[27] Temam, R.: Navier-Stokes Equations. Theory and numerical analysis. Amsterdam: North-Holland 1977 · Zbl 0383.35057
[28] Zlámal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal.10, 229-240 (1973) · Zbl 0285.65067 · doi:10.1137/0710022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.