zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modelling the Fahraeus-Lindqvist effect through fluids of differential type. (English) Zbl 0637.76139
A steady laminar flow under a constant pressure gradient in a tube of radius b, with core consisting of a non-Newtonian fluid and the periphery a Newtonian fluid, is considered. The calculations qualitatively agree with the experimentaly observed phenomena, namely the Fahraeus-Lindqvist effect. An empirical formula for blood viscosity is deduced. Giving different values to the flow parameters graphs are drawn for apparent viscosity against tube radius and agree well with the experimental result. Is is found that the velocity reduces in magnitude and its profile becomes blunt in the core when compared with the corresponding profile for the Newtonian fluid.

76Z05Physiological flows
76M99Basic methods in fluid mechanics
92C50Medical applications of mathematical biology
Full Text: DOI
[1] Gaetghens, P.: Biorheology. 17, 183 (1980)
[2] Schofield, R. K.; Scottblair, G. W.: J. phys. Chem.. 34, 248 (1930)
[3] Fahraeus, R.; Lindqvist, T.: Am. J. Physiol.. 96, 562 (1931)
[4] Merrill, E. W.; Gilliland, E. R.; Cokelet, G.; Shin, H.; Britten, A.; Well, R. E.: J. appl. Physiol.. 18, 255 (1963)
[5] Haynes, R. H.; Burton, A. C.: Am. J. Physiol.. 197, 943 (1959)
[6] Meiselman, A. H.; Merrill, E. W.; Salzman, E. W.; Gilliland, E. R.; Pelletier, G. A.: J. appl. Physiol.. 22, 480 (1967)
[7] Barbee, J. H.; Cokelet, G. R.: Microvas. res.. 3, 17 (1971)
[8] Taylor, M. G.: Phys. med. Biol.. 3, 273 (1959)
[9] Dintenfass, L.: Nature. 215, 1099 (1967)
[10] Chien, S.; Usami, S.; Taylor, H. M.; Lundberg, J. L.; Gregersen, N. J.: J. appl. Physiol.. 21, 81 (1966)
[11] Brooks, D. E.; Goodwin, J. W.; Seaman, G. V. F.: J. appl. Physiol.. 28, 172 (1970)
[12] Rivlin, R. S.; Ericksen, J. L.: J. rational mech. Anal.. 4, 323 (1955)
[13] Truesdell, C.; Noll, W.: Flugge handbuch der physik. Handbuch der physik /3 (1965)
[14] Fosdick, R. L.; Rajagopal, K. R.: Proc. R. Soc. lond.. 339, 351 (1980)
[15] Rajagopal, K. R.; Gupta, A. S.: Int. J. Engng. sci.. 19, 1009 (1981)
[16] Charm, S. E.; Kurland, G. S.: D.h.bergel cardiovascular fluid dynamics. Cardiovascular fluid dynamics 2 (1972)