×

zbMATH — the first resource for mathematics

The shifting bottleneck procedure for job shop scheduling. (English) Zbl 0637.90051
Summary: We describe an approximation method for solving the minimum makespan problem of job shop scheduling. It sequences the machines one by one, successively, taking each time the machine identified as a bottleneck among the machines not yet sequenced. Every time after a new machine is sequenced, all previously established sequences are locally reoptimized. Both the bottleneck identification and the local reoptimization procedures are based on repeatedly solving certain one-machine scheduling problems. Besides this straight version of the Shifting Bottleneck Procedure, we have also implemented a version that applies the procedure to the nodes of a partial search tree. Computational testing shows that our approach yields consistently better results than other procedures discussed in the literature. A high point of our computational testing ocurred when the enumerative version of the Shifting Bottleneck Procedure found in a little over five minutes an optimal schedule to a notorious ten machines/ten jobs problem on which many algorithms have been run for hours without finding an optimal solution.

MSC:
90B35 Deterministic scheduling theory in operations research
PDF BibTeX XML Cite
Full Text: DOI