×

Convergence rate for some quasilinear eigenvalues homogenization problems. (English) Zbl 1382.35111

Summary: In this work we study the homogenization problem for nonlinear eigenvalues of some quasilinear elliptic operators. We obtain an explicit order of convergence in \(k\) and in \(\varepsilon\) for the (variational) eigenvalues.

MSC:

35J62 Quasilinear elliptic equations
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acosta, G.; Durán, R., An optimal Poincaré inequality in \(L^1\) for convex domains, Proc. Amer. Math. Soc., 195-202 (2004) · Zbl 1057.26010
[2] Anane, A.; Chakrone, O.; Moussa, M., Spectrum of one dimensional \(p\)-Laplacian operator with indefinite weight, Electron. J. Qual. Theory Differ. Equ., 17, 11 (2002), MR 1942086 (2004b:34044) · Zbl 1022.35033
[3] Baffico, L.; Conca, C.; Rajesh, M., Homogenization of a class of nonlinear eigenvalue problems, Proc. Roy. Soc. Edinburgh Sect. A, 136, 1, 7-22 (2006), MR 2217505 (2007b:35021) · Zbl 1105.35010
[4] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (2011), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, corrected reprint of the 1978 original [MR0503330], MR 2839402
[5] Boccardo, L.; Marcellini, P., Sulla convergeuza delle soluzioni di disequazioni variazionali, Ann. Mat. Pura Appl., 90, 137-159 (1976) · Zbl 0333.35030
[6] Castro, C.; Zuazua, E., High frequency asymptotic analysis of a string with rapidly oscillating density, European J. Appl. Math., 11, 6, 595-622 (2000), MR 1811309 (2001k:34093) · Zbl 0983.34078
[7] Castro, C.; Zuazua, E., Low frequency asymptotic analysis of a string with rapidly oscillating density, SIAM J. Appl. Math., 60, 4, 1205-1233 (2000), (electronic), MR 1760033 (2001h:34117) · Zbl 0967.34074
[8] Champion, T.; De Pascale, L., Asymptotic behavior of non linear eigenvalue problems involving p-Laplacian type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137, 1179-1195 (2007) · Zbl 1134.35013
[9] Chiadò Piat, Valeria; Dal Maso, Gianni; Defranceschi, Anneliese, \(G\)-convergence of monotone operators, Ann. Inst. H. Poincare Anal. Non Lineaire, 7, 3, 123-160 (1990), MR 1065871 (91f:49018) · Zbl 0731.35033
[10] del Pino, M.; Drábek, P.; Manásevich, R., The Fredholm alternative at the first eigenvalue for the one-dimensional \(p\)-Laplacian, J. Differential Equations, 151, 2, 386-419 (1999) · Zbl 0931.34065
[11] Drabek, P.; Manásevich, R., On the closed solutions to some nonhomegeneous eigenvalue problems with \(p\)-Laplacian, Differential Integral Equations, 12, 6, 773-788 (1999) · Zbl 1015.34071
[12] Fernández Bonder, J.; Pinasco, J. P., Asymptotic behavior of the eigenvalues of the one-dimensional weighted \(p\)-Laplace operator, Ark. Mat., 41, 2, 267-280 (2003), MR 2011921 (2005c:34172) · Zbl 1037.35050
[13] Friedlander, L., Asymptotic behavior of the eigenvalues of the \(p\)-laplacian, Comm. Partial Differential Equations, 14, 8&9, 1059-1070 (1989) · Zbl 0704.35108
[14] Kenig, C. E.; Lin, Fanghua; Shen, Zhongwei, Convergence rates in \(l^2\) for elliptic homogenization problems, Arch. Ration. Mech. Anal., 203, 3, 1009-1036 (2012) · Zbl 1258.35086
[15] Kenig, C. E.; Lin, Fanghua; Shen, Zhongwei, Estimates of eigenvalues and eigenfunctions in periodic homogenization, preprint · Zbl 1292.35179
[16] Kesavan, S., Homogenization of elliptic eigenvalue problems. I, Appl. Math. Optim., 5, 2, 153-167 (1979), MR 533617 (80f:65111) · Zbl 0415.35061
[17] Kesavan, S., Homogenization of elliptic eigenvalue problems. II, Appl. Math. Optim., 5, 3, 197-216 (1979), MR 546068 (80i:65110) · Zbl 0428.35062
[18] Oleĭnik, O. A.; Shamaev, A. S.; Yosifian, G. A., Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and Its Applications, vol. 26 (1992), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam, MR 1195131 (93k:35025) · Zbl 0768.73003
[19] Pinasco, J. P., The asymptotic behavior of nonlinear eigenvalues, Rocky Mountain J. Math., 37, 6, 1981-1988 (2007), MR 2382638 (2008m:34192) · Zbl 1133.35077
[20] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65 (1986), AMS/CBMS: AMS/CBMS Washington, DC, published for the Conference Board of the Mathematical Sciences, MR 845785 (87j:58024) · Zbl 0609.58002
[21] Sánchez-Palencia, E., Équations aux dérivées partielles dans un type de milieux hétérogènes, C. R. Acad. Sci. Paris, Ser. A-B, 272, A1410-A1413 (1971), MR 0284064 (44 #1294)
[22] Santosa, F.; Vogelius, M., First-order corrections to the homogenized eigenvalues of a periodic composite medium, SIAM J. Appl. Math., 53, 6, 1636-1668 (1993) · Zbl 0808.35085
[23] Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Super. Pisa (3). Ann. Sc. Norm. Super. Pisa (3), Ann. Sc. Norm. Super. Pisa (3), 22, 673-597 (1968), MR 0240443 (39 #1791) · Zbl 0174.42101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.