zbMATH — the first resource for mathematics

\(\mathcal{H}_{2,\alpha}\)-norm optimal model reduction for optimal control problems subject to parabolic and hyperbolic evolution equations. (English) Zbl 1303.49014
Summary: This paper deals with a numerical solution method for optimal control problems subject to parabolic and hyperbolic evolution equations. Firstly, the problem is semi-discretized in space with the boundary or distributed controls as input and those parts of the discretized state appearing in the cost functional as output variables. The corresponding transfer function is then approximated optimally with respect to the \(\mathcal{H}_{2,\alpha}\)-norm providing an optimally reduced optimal control problem, which is finally solved by a first-discretize-then-optimize approach. To enable the application of this reduction method, a new constrained optimal model reduction problem subject to reduced systems with real system matrices is considered. Necessary optimality conditions and a transformation procedure for the reduced system to a canonical form of real matrices are presented. The method is illustrated with numerical examples where also complicated controls with many bang-bang arcs are investigated. The approximation quality of the optimal control and its correlation to the decay rate of the Hankel singular values of the system are studied numerically. A comparison to the approach of using balanced truncation for model reduction is applied.
49M25 Discrete approximations in optimal control
49K20 Optimality conditions for problems involving partial differential equations
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
93C20 Control/observation systems governed by partial differential equations
Full Text: DOI
[1] Tröltzsch, POD a-posteriori error estimates for linear-quadratic optimal control problems, Computational Optimization and Applications 44 pp 83– (2009) · Zbl 1189.49050 · doi:10.1007/s10589-008-9224-3
[2] Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications 112 (2010)
[3] Moore, Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Transactions on Automatic Control 26 (1) pp 17– (1981) · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[4] Wilson, Optimum solution of model-reduction problem, Proceedings of the Institution of Electrical Engineers 117 (6) pp 1161– (1970) · doi:10.1049/piee.1970.0227
[5] Gugercin, H2 model reduction for large-scale linear dynamical systems, SIAM Journal on Matrix Analysis and Applications 30 (2) pp 609– (2008) · Zbl 1159.93318 · doi:10.1137/060666123
[6] Kubalinska D Optimal interpolation-based model reduction Ph.D. Thesis 2008
[7] Bunse-Gerstner, H2-norm optimal model reduction for large-scale discrete dynamical MIMO systems, Journal of Computational and Applied Mathematics 233 (5) pp 1202– (2010) · Zbl 1178.93032 · doi:10.1016/j.cam.2008.12.029
[8] Berkooz, The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics 25 pp 539– (1993) · doi:10.1146/annurev.fl.25.010193.002543
[9] Grepl, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, Mathematical Modelling and Numerical Analysis 39 pp 157– (2005) · Zbl 1079.65096 · doi:10.1051/m2an:2005006
[10] Tan, Active Flow Control Using a Reduced Order Model and Optimum Control (1996)
[11] Kunisch, Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition, Journal of Optimization Theory and Applications 102 (2) pp 345– (1999) · Zbl 0949.93039 · doi:10.1023/A:1021732508059
[12] Benner, Lecture Notes in Computational Science and Engineering 45, in: Reduction of Large-Scale Systems pp 5– (2005) · doi:10.1007/3-540-27909-1_1
[13] De Los Reyes, A balanced truncation based strategy for optimal control of evolution problems, Optimization Methods and Software 26 (4-5) pp 673– (2011) · Zbl 1227.49037 · doi:10.1080/10556788.2010.526756
[14] Ito, Reduced basis method for optimal control of unsteady viscous flows, International Journal of Computational Fluid Dynamics 15 (2) pp 97– (2001) · Zbl 1036.76011 · doi:10.1080/10618560108970021
[15] Oberle HJ Grimm W BNDSCO - a program for the numerical solution of optimal control problems Technical Report 1989
[16] Büskens C Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen Ph.D. Thesis 1998
[17] Hintermüller, The primal-dual active set strategy as a semi-smooth Newton method, SIAM Journal on Optimization 13 pp 865– (2003) · Zbl 1080.90074 · doi:10.1137/S1052623401383558
[18] Antoulas, Approximation of Large-Scale Dynamical Systems (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[19] Meier, Approximation of linear constant systems, IEEE Transactions on Automatic Control 12 (5) pp 585– (1967) · doi:10.1109/TAC.1967.1098680
[20] Gugercin S Antoulas AC Beattie C Rational Krylov methods for optimal H 2 model reduction Technical Report 2006
[21] Van Dooren, H2-optimal model reduction of MIMO systems, Applied Mathematics Letters 21 (12) pp 1267– (2008) · Zbl 1182.93034 · doi:10.1016/j.aml.2007.09.015
[22] Wächter, On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming 106 (1) pp 25– (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[23] Fourer, A modeling language for mathematical programming, Management Science 36 pp 519– (1990) · Zbl 0701.90062 · doi:10.1287/mnsc.36.5.519
[24] Vossen, Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems, Numerical Algebra, Control and Optimization 3 pp 465– (2012) · Zbl 1254.49018 · doi:10.3934/naco.2012.2.465
[25] Hinze, Discrete concepts versus error analysis in PDE constrained optimization, GAMM-Mitteilungen 33 (2) pp 148– (2010) · Zbl 1207.49005 · doi:10.1002/gamm.201010012
[26] McDanell, Necessary conditions for joining singular and nonsingular subarcs, SIAM Journal on Control 9 (2) pp 161– (1971) · Zbl 0226.49015 · doi:10.1137/0309014
[27] Hartl, Anticipation effects of technological progress on capital accumulation: a vintage capital approach, Journal of Economic Theory 126 (1) pp 143– (2006) · Zbl 1108.91055 · doi:10.1016/j.jet.2004.10.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.