×

zbMATH — the first resource for mathematics

Design of optimal PID controller with \(\epsilon\)-Routh stability for different processes. (English) Zbl 1299.93186
Summary: This paper presents a design method of the optimal proportional-integral-derivative (PID) controller with \(\epsilon\)-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may contain \(n\)th-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO) problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices and \(\epsilon\)-Routh stability are presented for different processes. Control weight matrix and \(\epsilon\)-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed. \(\epsilon\)-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS) under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.
MSC:
93C85 Automated systems (robots, etc.) in control theory
93C80 Frequency-response methods in control theory
93B50 Synthesis problems
Software:
LIPSOL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. J. D’Azzo and C. H. Houpis, Linear Control System Analysis and Design, McGraw-Hill, New York, NY, USA, 2nd edition, 1981. · Zbl 0145.12403
[2] M. D. Tong, Linear System Theory and Design, University of Science and Technology of China press, Hefei, China, (Chinese), 2004.
[3] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” ASME Transactions, vol. 64, pp. 759-768, 1942.
[4] J. G. Ziegler and N. B. Nichols, “Process lags in automatic control circuits,” Transactions of the ASME, vol. 65, pp. 433-444, 1943.
[5] G. H. Cohen and G. A. Coon, “Theoretical consideration of related control,” Transactions of the ASME, vol. 75, pp. 827-834, 1953.
[6] C. R. Madhuranthakam, A. Elkamel, and H. Budman, “Optimal tuning of PID controllers for FOPTD, SOPTD and SOPTD with lead processes,” Chemical Engineering and Processing, vol. 47, no. 2, pp. 251-264, 2008. · doi:10.1016/j.cep.2006.11.013
[7] D. H. Kim and J. H. Cho, “Intelligent tuning of PID controller with disturbance function using immune algorithm,” in Proceedings of the IEEE Annual Meeting Fuzzy Information Processing, vol. 1, pp. 286-291, June 2004.
[8] Y. P. Wang, D. R. Hur, H. H. Chung, N. R. Watson, J. Arrillaga, and S. S. Matair, “Design of an optimal PID controller in AC-DC power system using modified genetic algorithm,” in Proceedings of the 2000 International Conference on Power System Technology, vol. 3, pp. 1437-1442, December 2000.
[9] Q. Zeng and G. Tan, “Optimal design of PID controller using modified ant colony system algorithm,” in Proceedings of the 3rd International Conference on Natural Computation (ICNC ’07), vol. 5, pp. 436-440, August 2007. · doi:10.1109/ICNC.2007.518
[10] Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 384-391, 2004. · doi:10.1109/TEC.2003.821821
[11] H. Hu, Q. Hu, Z. Lu, and D. Xu, “Optimal PID controller design in PMSM servo system via particle swarm optimization,” in Proceedings of the 31st Annual Conference of IEEE Industrial Electronics Society (IECON ’05), pp. 79-83, November 2005. · doi:10.1109/IECON.2005.1568882
[12] T. H. Kim, I. Maruta, and T. Sugie, “Particle swarm optimization based robust PID controller tuning scheme,” in Proceedings of the 46th IEEE Conference on Decision and Control (CDC ’07), pp. 200-205, New Orleans, La, USA, December 2007. · doi:10.1109/CDC.2007.4434126
[13] M. I. Solihin, Wahyudi, M. A. S. Kamal, and A. Legowo, “Optimal PID controller tuning of automatic gantry crane using PSO algorithm,” in Proceedings of the 5th International Symposium on Mechatronics and its Applications (ISMA ’08), Amman, Jordan, May 2008. · Zbl 1269.70051 · doi:10.1109/ISMA.2008.4648804
[14] S. Pothiya and I. Ngamroo, “Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units,” Energy Conversion and Management, vol. 49, no. 10, pp. 2833-2838, 2008. · doi:10.1016/j.enconman.2008.03.010
[15] M. Zhuang and D. P. Atherton, “Automatic tuning of optimum PID controllers,” IEE Proceedings D, vol. 140, no. 3, pp. 216-224, 1993. · Zbl 0775.93024 · doi:10.1049/ip-d.1993.0030
[16] G. Herjdlfsson and A. S. Hauksddttir, “Direct computation of optimal PID controllers,” in Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 1120-1125, Maui, Hawaii USA, December 2003.
[17] S. Daley and G. P. Liu, “Optimal PID tuning using direct search algorithms,” Computing and Control Engineering Journal, vol. 10, no. 2, pp. 51-56, 1999.
[18] S. Tavakoli and M. Tavakoli, “Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis,” in Proceedings of the 4th International Conference on Control and Automation, pp. 942-946, Montreal, Canada, June 2003.
[19] H. Panagopoulos, K. J. Astrom, and T. Hagglund, “Design of PID controllers based on constrained optimization,” IEE Proceedings, vol. 149, no. 1, pp. 32-40, 2002.
[20] C. Hwang and C. Y. Hsiao, “Solution of a non-convex optimization arising in PI/PID control design,” Automatica, vol. 38, no. 11, pp. 1895-1904, 2002. · Zbl 1026.93017 · doi:10.1016/S0005-1098(02)00115-2
[21] Y. L. Xue, D. H. Li, and C. D. Lv, “Optimal design of PID controller based on sensitivity constraint,” in Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, June 2004.
[22] C. H. Hsieh and J. H. Chou, “Design of optimal PID controllers for PWM feedback systems with bilinear plants,” IEEE Transactions on Control Systems Technology, vol. 15, no. 6, pp. 1075-1079, 2007. · doi:10.1109/TCST.2007.908084
[23] R. T. J. O’Brien and J. M. Howe, “Optimal PID controller design using standard optimal control techniques,” in Proceedings of the 2008 American Control Conference, pp. 4733-4738, Seattle, Wash, USA, June 2008.
[24] J. B. He, Q. G. Wang, and T. H. Lee, “PI/PID controller tuning via LQR approach,” in Proceedings of the 37th IEEE Conference on Decision and Control, pp. 1177-1182, Tampa, Fla, USA, December 1998.
[25] G. R. Yu and R. C. Hwang, “Optimal PID speed control of brush less DC motors using LQR approach,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC ’04), pp. 473-478, October 2004.
[26] H. Zargarzadeh, M. R. Jahed Motlagh, and M. M. Arefi, “Multivariable robust optimal PID controller design for a non-minimum phase boiler system using loop transfer recovery technique,” in Proceedings of the 6th Mediterranean Conference on Control and Automation (MED ’08), pp. 1520-1525, Ajaccio, France, June 2008. · doi:10.1109/MED.2008.4602170
[27] P. Han, Y. Huang, Z. Z. Jia, D. F. Wang, and Y. L. Li, “Mixed H2/H\infty optimal pid control for superheated steam temperature system based on PSO optimization,” in Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC ’05), pp. 960-964, Guangzhou, China, August 2005.
[28] P. B. Dickinson and A. T. Shenton, “A parameter space approach to constrained variance PID controller design,” Automatica, vol. 45, no. 3, pp. 830-835, 2009. · Zbl 1168.93348 · doi:10.1016/j.automatica.2008.10.030
[29] J. C. Basilio and S. R. Matos, “Design of PI and PID controllers with transient performance specification,” IEEE Transactions on Education, vol. 45, no. 4, pp. 364-370, 2002. · doi:10.1109/TE.2002.804399
[30] M. Saeki, “Fixed structure PID controller design for standard H\infty control problem,” Automatica, vol. 42, no. 1, pp. 93-100, 2006. · Zbl 1121.93318 · doi:10.1016/j.automatica.2005.07.006
[31] O. Lequin, M. Gevers, M. Mossberg, E. Bosmans, and L. Triest, “Iterative feedback tuning of PID parameters: comparison with classical tuning rules,” Control Engineering Practice, vol. 11, no. 9, pp. 1023-1033, 2003. · doi:10.1016/S0967-0661(02)00303-9
[32] M. Xu, S. Li, C. Qi, and W. Cai, “Auto-tuning of PID controller parameters with supervised receding horizon optimization,” ISA Transactions, vol. 44, no. 4, pp. 491-500, 2005.
[33] G. L. Luo and G. N. Saridis, “LQ design of PID controllers for robot arms,” IEEE Journal of Robotics and Automation, vol. RA-1, no. 3, pp. 152-159, 1985.
[34] X. H. Li, H. B. Yu, and M. Z. Yuan, “Design of an optimal PID controller based on Lyapunov approach,” in Proceedings of the International Conference on Information Engineering and Computer Science (ICIECS ’09), Wuhan, China, December 2009. · doi:10.1109/ICIECS.2009.5365172
[35] K. J. Astrom and T. Hagglund, “The future of PID control,” Control Engineering Practice, vol. 9, pp. 1163-1175, 2001.
[36] X. H. Li, H. B. Yu, M. Z. Yuan, and J. Wang, “Design of robust optimal proportional-integral-derivative controller based on new interval polynomial stability criterion and Lyapunov theorem in the multiple parameters’ perturbations circumstance,” IET Control Theory and Applications, vol. 4, no. 11, pp. 2427-2440, 2010. · doi:10.1049/iet-cta.2009.0424
[37] H. Biao and R. Kadali, “System identification: conventional approach,” in Dynamic Modeling, Predictive Control and Performance Monitoring, vol. 374 of Lecture Notes in Control and Information Sciences, pp. 9-29, Springer Press, Berlin, Germany, 2008. · Zbl 1204.93003 · doi:10.1007/978-1-84800-233-3_2
[38] F. P. Ti, System Identification, Zhe Jiang University Press, Hangzhou, China, (Chinese), 2004.
[39] D. E. Rivera, M. Morari, and S. Skogestad, “Internal model control. 4. PID controller design,” Industrial and Engineering Chemistry Process Design and Development, vol. 25, no. 1, pp. 252-265, 1986.
[40] S. Skogestad, “Simple analytic rules for model reduction and PID controller tuning,” Journal of Process Control, vol. 13, no. 4, pp. 291-309, 2003. · doi:10.1016/S0959-1524(02)00062-8
[41] M. Veronesi and A. Visioli, “Performance assessment and retuning of PID controllers for integral processes,” Journal of Process Control, vol. 20, no. 3, pp. 261-269, 2010. · doi:10.1016/j.jprocont.2009.12.007
[42] A. Visioli, “A new design for a PID plus feedforward controller,” Journal of Process Control, vol. 14, no. 4, pp. 457-463, 2004. · doi:10.1016/j.jprocont.2003.09.003
[43] H. P. Huang, J. C. Jeng, C. H. Chiang, and W. Pan, “A direct method for multi-loop PI/PID controller design,” Journal of Process Control, vol. 13, no. 8, pp. 769-786, 2003. · doi:10.1016/S0959-1524(03)00009-X
[44] K. K. Tan, T. H. Lee, and X. Jiang, “On-line relay identification, assessment and tuning of PID controller,” Journal of Process Control, vol. 11, no. 5, pp. 483-496, 2001. · doi:10.1016/S0959-1524(00)00012-3
[45] Q. G. Wang, Z. Zhang, K. J. Astrom, and L. S. Chek, “Guaranteed dominant pole placement with PID controllers,” Journal of Process Control, vol. 19, no. 2, pp. 349-352, 2009. · Zbl 05813862 · doi:10.1016/j.jprocont.2008.04.012
[46] L. Meng and D. Xue, “Design of an optimal fractional-order PID controller using multi-objective GA optimization,” in Proceedings of the Chinese Control and Decision Conference (CCDC ’09), pp. 3849-3853, June 2009. · doi:10.1109/CCDC.2009.5191796
[47] X. H. Li, H. B. Yu, and M. Z. Yuan, “A new design method of optimal PID controller with dynamic performances constrained,” Control and Intelligent Systems, vol. 40, no. 4, pp. 1-21, 2012.
[48] I. J. Nagrath and M. Gopal, Control Systems Engineering, Wiley Eastern, New Delhi, India, 1975.
[49] G. H. Hostetter, C. J. Savant Jr., and R. T. Stefani, Design of Feedback Control System, CBS college, 1982.
[50] T. F. Coleman and Y. Li, “On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds,” Mathematical Programming, vol. 67, no. 2, pp. 189-224, 1994. · Zbl 0842.90106 · doi:10.1007/BF01582221
[51] D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization,” Mathematics of Computation, vol. 24, pp. 647-656, 1970. · Zbl 0225.65073 · doi:10.2307/2004840
[52] W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 170-192, 2005. · Zbl 1093.90085 · doi:10.1137/030601880
[53] J. E. Dennis, M. El-Alem, and K. Williamson, “A trust-region approach to nonlinear systems of equalities and inequalities,” SIAM Journal on Optimization, vol. 9, no. 2, pp. 291-315, 1999. · Zbl 0957.65058 · doi:10.1137/S1052623494276208
[54] W. W. Hager and D. T. Phan, “An ellipsoidal branch and boun d algorithm for global optimizati on,” SIAM Journal on Optimization, vol. 20, no. 2, pp. 740-758, 2009. · Zbl 1198.90318 · doi:10.1137/080729165
[55] N. I. M. Gould, “The generalized steepest-edge for linear programming,” Combinatorics and Optimization, Technical Report 83-2, University of Waterloo, Waterloo, Canada, 1983.
[56] Y. Zhang, “Solving large-scale linear programs by interior-point methods under the MATLAB environment,” Tech. Rep. TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore, Md, USA, 1995.
[57] R. J. Vanderbei and D. F. Shanno, “An interior-point algorithm for non-convex nonlinear programming,” Computational Optimization and Applications, vol. 13, no. 1-3, pp. 231-252, 1999. · Zbl 1040.90564 · doi:10.1023/A:1008677427361
[58] H. Y. Benson and D. F. Shanno, “Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts,” Computational Optimization and Applications, vol. 40, no. 2, pp. 143-189, 2008. · Zbl 1181.90243 · doi:10.1007/s10589-007-9089-x
[59] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear optimization that combines line search and trust region steps,” Mathematical Programming, vol. 107, no. 3, pp. 391-408, 2006. · Zbl 1134.90053 · doi:10.1007/s10107-004-0560-5
[60] H. B. Richard, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 877-900, 1997. · Zbl 0957.65057 · doi:10.1137/S1052623497325107
[61] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimization,” SIAM Review, vol. 44, no. 4, pp. 525-597, 2002. · Zbl 1028.90060 · doi:10.1137/S0036144502414942
[62] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass, USA, 1989. · Zbl 0721.68056
[63] H. H. Holger and T. Stutzle, Stochastic Local Search: Foundations and Applications, Morgan Kaufmann, San Francisco, Calif, USA, 2004.
[64] X. H. Li, H. B. Yu, and M. Z. Yuan, “Robust stability of interval polynomials and matrices for linear systems,” in Proceedings of the IASTED International Conference Modelling, Identification, and Control, pp. 138-147, Phuket, Thailand, November 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.