×

Fractional models of anomalous relaxation based on the Kilbas and Saigo function. (English) Zbl 1307.34007

From the summary: After some remarks on the Kilbas and Saigo functions, we discuss a class of fractional differential equations of order \(\alpha \in (0,1]\) with a characteristic coefficient varying in time according to a power law of exponent \(\beta \), whose solutions will be presented in terms of these functions. We show 2D plots of the solutions and, for a few of them, the corresponding spectral distributions, keeping fixed one of the two order-parameters. The numerical results confirm the complete monotonicity of the solutions via the non-negativity of the spectral distributions, provided that the parameters satisfy the additional condition \(0<\alpha +\beta \leq 1\), assumed by us.

MSC:

34A08 Fractional ordinary differential equations
33E12 Mittag-Leffler functions and generalizations

Software:

Kilbas Saigo
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, RP, A propos d’une note de M. pierre Humbert, C R Acad Sci Paris, 236, 2013-2032, (1953) · Zbl 0051.30801
[2] Anderssen, RS; Husain, SA; Loy, RJ, The kohlrausch function: properties and applications, ANZIAM J , 45, 800-816, (2004)
[3] Capelas Oliveira, E; Mainardi, F; Vaz, J, The kohlrausch function: properties and applications, ANZIAM J , 45, 800-816, (2011)
[4] Cole, KS; Cole, RH, Dispersion and absorption in dielectrics. I. alternating current characteristics, J Chem Phys, 9, 341-351, (1941)
[5] Cole, KS; Cole, RH, Dispersion and absorption in dielectrics. II. direct current characteristics, J Chem Phys, 10, 98-105, (1942)
[6] Davidson, DW; Cole, RH, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, J Chem Phys, 19, 1484-1490, (1951)
[7] Doetsch G (1974) Introduction to the theory and application of the Laplace transformation. Springer, Berlin · Zbl 0278.44001
[8] Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1974) Higher transcendental functions, McGraw-Hill, New York · Zbl 0278.44001
[9] Garra, R; Giusti, A; Mainardi, F; Pagnini, G, Fractional relaxation with time-varying coefficient, Fract Calc Appl Anal, 17, 424-439, (2014) · Zbl 1305.26018
[10] Gorenflo R, Kilbas AA, Mainardi F, Rogosin S (2014) Mittag-Leffler functions, related topics and applications, Springer, Berlin · Zbl 1309.33001
[11] Gorenflo, R; Kilbas, AA; Rogosin, SV, On generalized Mittag-Leffler type functions, Int Trans Spec Funct, 7, 215-224, (1998) · Zbl 0935.33012
[12] Gorenflo, R; Mainardi, F; Carpinteri , A (ed.); Mainardil, F (ed.), Fractional calculus: integral and differential equations of fractional order, 223-276, (2011), Wien
[13] Gross, B, Note on the inversion of the Laplace transform, Phil Mag, 41, 543-544, (1950) · Zbl 0036.35102
[14] Hanyga, A; Seredyńska, M, On a mathematical framework for the constitutive equations of anisotropic dielectric relaxation, J Stat Phys, 131, 269-303, (2008) · Zbl 1151.78002
[15] Hanyga, A; Seredyńska, M, Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion, J Mag Resson, 220, 85-93, (2012)
[16] Havriliak, S; Negami, S, A complex plane analysis of α-dispersions in some polymer systems, J Polymer Sci C, 14, 99-117, (1966)
[17] Havriliak, S; Negami, S, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer, 8, 161-210, (1967)
[18] Hilfer, H, Analytical representations for relaxation functions of glasses, J Non-Cryst Solids, 305, 122-126, (2002)
[19] Hilfer, H, Analytical representations for relaxation functions of glasses, Phys Rev E, 65, 1-5, (2002)
[20] Humbert, P; Agarwal, RP, Sur la fonction de Mittag-Leffler et quelques unes de ses généralizations, Bull Sci Math, 77, 180-185, (1953) · Zbl 0052.06402
[21] Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London
[22] Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London
[23] Jurlewicz, A; Weron, K, Relaxation of dynamically correlated clusters, J Non-Cryst Solids, 305, 112-121, (2002)
[24] Jurlewicz, A; Weron, K; Teuerle, M, Relaxation of dynamically correlated clusters, Phys Rev E, 78, 1-8, (2002)
[25] Kilbas, AA; Repin, OA, An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative, Fract Calc Appl Anal, 13, 69-84, (2010) · Zbl 1201.35148
[26] Kilbas, AA; Saigo, M, Fractional integral and derivatives of Mittag-Leffler type function, Dokl Akad Nauk Belarusi, 39, 22-26, (1995)
[27] Kilbas, AA; Saigo, M, Solution of Abel integral equations of the second kind and of differential equation of fractional order, Dokl Akad Nauk Belarusi, 39, 29-34, (1995)
[28] Kilbas, AA; Saigo, M, On solution of integral equations of Abel-Volterra type, Diff Int Eqs, 8, 993-1011, (1995) · Zbl 0823.45002
[29] Kilbas, AA; Saigo, M, On Mittag-Leffler type function, fractional calculus operators and solution of integral equations, Int Transf Spec Funct, 4, 355-370, (1996) · Zbl 0876.26007
[30] Kilbas, AA; Saigo, M, On Mittag-Leffler type function, fractional calculus operators and solution of integral equations, Int Transf Spec Funct, 4, 355-370, (1996) · Zbl 0876.26007
[31] AA Kilbas, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, Elsevier, Amsterdam
[32] Kiryakova, V, Multi-index Mittag-Leffler functions, related Gelfond-leontiev operators and Laplace type integral transforms, Fract Calc Appl Anal, 2, 445-462, (1999) · Zbl 1111.33300
[33] Kiryakova, V, Multiple (multi-index) Mittag-Leffler functions and relations to generalized fractional calculus, J Comput Appl Math, 118, 241-259, (2000) · Zbl 0966.33011
[34] Kiryakova, V, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus, Comp Math Appl, 59, 1885-1895, (2010) · Zbl 1189.33034
[35] Kohlrausch, R, Theorie des elektrischen R-uckstandes in der leidener flasche, Pogg Ann Phys Chem, 91, 179-214, (1854)
[36] Luchko, Yu, Operational method in fractional calculus, Fract Calc Appl Anal, 2, 463-488, (1999) · Zbl 1030.26009
[37] Magin RL, Ingo C, Colon-Perez L, Mareci TH, Hanyga A (2013) Fractional-order models of anomalous diffusion: memory, non-locality and entropy. In: Proceedings of the international conference on fractional signals and systems (FSS 2013), Ghent, 24-26 Oct 2013
[38] Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London · Zbl 1210.26004
[39] Miller, KS; Samko, SG, A note on the complete monotonicity of the generalized Mittag-Leffler function, Real Anal Ex, 32, 753-756, (1997)
[40] Miller, KS; Samko, SG, Completely monotonic functions, Int Trans Spec Funct, 12, 389-402, (2001) · Zbl 1035.26012
[41] Mittag-Leffler, G, Sur la nouvelle fonction E_{α}(x), C R Acad Sci Paris, 137, 554-558, (1903) · JFM 34.0435.01
[42] Mittag-Leffler, G, Sur la représentation analytique d’une branche uniforme d’une fonction monógene, Acta Math, 29, 101-181, (1905) · JFM 36.0469.02
[43] Orsingher E Polito F (2009) Some results on time-varying fractional partial differential equations and birth-death processes. In: Proceedings of the XIII international EM conference on eventological mathematics and related fields, Krasnoyarsk, 2009 pp 23-27.
[44] Podlubny I (1999) Fractional differential equations, Academic Press, San Diego [Mathematics in Science and Engineering, Vol. 198] · Zbl 0918.34010
[45] Pollard, H, The completely monotonic character of the Mittag-Leffler function E_{α}(−x), Bull Amer Math Soc, 54, 1115-1116, (1948) · Zbl 0033.35902
[46] Prabhakar, TR, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math J, 19, 7-15, (1971) · Zbl 0221.45003
[47] Saigo , M; Kilbas, AA, The solution of a class of linear differential equations via functions of the Mittag-Leffler type, Diff Eqns, 36, 193-202, (2000) · Zbl 0982.34002
[48] Saxena, RK; Saigo, M, Certain properties of fractional calculus operators associated with generalized Mittag-Leffler functions, Fract Calc Appl Anal, 8, 141-154, (2005) · Zbl 1144.26010
[49] Schneider, WR, Completely monotone generalized Mittag-Leffler functions, Expo Math, 14, 3-16, (1996) · Zbl 0843.60024
[50] Srivastava HM (2014) Special functions in fractional calculus and related fractional differintegral equations.World Scientific, Singapore
[51] Titchmarsch EC (1937) Introduction to the theory of Fourier integrals. Clarendon Press, Oxford
[52] Stanislavski, A; Weron, K; Trzmiel, J, Certain properties of fractional calculus operators associated with generalized Mittag-Leffler functions, Fract Calc Appl Anal, 8, 141-154, (2005) · Zbl 1144.26010
[53] Uchaikin V, Sibatov R (2013) Fractional kinetics in solids. Anomalous charge transport in semiconductors, dielectrics and nanosystems, World Scientific, Singapore · Zbl 1277.82006
[54] Weroni, K; Jurlewicz, A; Magdziarzl, M; Weron, A; Trzmiel, J, Overshooting and undershooting subordination scenario for fractional two-power-law relaxation responses, Phys Rev E, 81, 141-154, (2005)
[55] Widder DV (1946) The Laplace transform. Princeton University Press, Princeton
[56] Williams, G; Watts, DC, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function, Trans Faraday Soc, 66, 80-85, (1970)
[57] Wiman, A, Über den fundamentalsatz der theorie der funktionen E_{α}(x), Acta Math, 29, 191-201, (1905) · JFM 36.0471.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.