×

On homological rigidity and flexibility of exact Lagrangian endocobordisms. (English) Zbl 1315.53093

Summary: We show that an exact Lagrangian cobordism \(L\subset\mathbb R\times P\times\mathbb R\) from a Legendrian submanifold \(\Lambda\subset P\times\mathbb R\) to itself satisfies \(H_i(L;\mathbb F)=H_i(\Lambda; \mathbb F)\) for any field \(\mathbb F\), given that \(\Lambda\) admits a spin exact Lagrangian filling and that the concatenation of any spin exact Lagrangian filling of \(\Lambda\) and \(L\) is also spin. The main tool used is Seidel’s isomorphism in wrapped Floer homology. In contrast to that, for loose Legendrian submanifolds of \(\mathbb C^n\times\mathbb R\), we construct examples of such cobordisms whose homology groups have arbitrarily high ranks. In addition, we prove that the front \(S^m\)-spinning construction preserves looseness, which implies certain forgetfulness properties of it.

MSC:

53D12 Lagrangian submanifolds; Maslov index
53D42 Symplectic field theory; contact homology
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.2140/gt.2010.14.627 · Zbl 1195.53106
[2] DOI: 10.1007/BF02566781 · Zbl 0666.57024
[3] DOI: 10.1090/S0894-0347-2012-00756-5 · Zbl 1272.53071
[4] DOI: 10.2140/gt.2003.7.799 · Zbl 1131.53312
[5] DOI: 10.1007/BF02803498 · Zbl 1090.53063
[6] DOI: 10.2140/agt.2010.10.63 · Zbl 1203.57010
[7] DOI: 10.1007/s002220200212 · Zbl 1029.57011
[8] DOI: 10.1007/978-0-8176-8277-4_6 · Zbl 1254.57024
[9] DOI: 10.1215/00127094-2009-046 · Zbl 1193.53179
[10] DOI: 10.1142/S0129167X05002941 · Zbl 1076.53099
[11] Ekholm T., J. Differential Geom. 71 pp 85– (2005) · Zbl 1098.57013
[12] Ekholm T., J. Differential Geom. 71 pp 177– (2005)
[13] DOI: 10.1090/S0002-9947-07-04337-1 · Zbl 1119.53051
[14] DOI: 10.1142/S0129167X90000034 · Zbl 0699.58002
[15] DOI: 10.1007/PL00001656 · Zbl 0986.53036
[16] Y. Eliashberg and M. Gromov, Geometry of Differential Equations, American Mathematical Society Translational Series 186 (American Mathematical Society, Providence, RI, 1998) pp. 27–118.
[17] DOI: 10.1007/s00039-013-0239-2 · Zbl 1308.53121
[18] DOI: 10.2307/2118583 · Zbl 0872.57030
[19] DOI: 10.1016/S0001-8708(02)00027-0 · Zbl 1047.57006
[20] DOI: 10.1007/978-3-540-68030-7_1 · Zbl 1163.53344
[21] DOI: 10.2140/pjm.2013.261.101 · Zbl 1275.53072
[22] DOI: 10.1112/blms/bdt091 · Zbl 1287.53069
[23] DOI: 10.1007/BF02566970 · Zbl 0186.27302
[24] DOI: 10.4171/CMH/248 · Zbl 1277.53089
[25] DOI: 10.1112/jtopol/jts038 · Zbl 1298.53093
[26] DOI: 10.1007/978-3-0348-8508-9_6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.