×

On large values of the Riemann zeta-function on short segments of the critical line. (English) Zbl 1377.11093

Summary: We obtain a series of new conditional lower bounds for the modulus and the argument of the Riemann zeta function on very short segments of the critical line, based on the Riemann hypothesis. In particular, we prove that for any large fixed constant \(A>1\) there exist (non-effective) constants \(T_{0}(A)>0\) and \(c_{0}(A)>0\) such that the maximum of \(|\zeta (0.5+it)|\) on the interval \((T-h,T+h)\) is greater than \(A\) for any \(T>T_{0}\) and \(h = (1/\pi)\ln\ln\ln{T}+c_{0}\).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses

Software:

ZetaGrid
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] [B]R. J. Backlund, \"{}Uber die Nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1916), 345–375. [Ba]R. Balasubramanian, On the frequency of Titchmarsh’s phenomenon for {\(\zeta\)}(s). IV, Hardy–Ramanujan J. 9 (1986), 1–10. [Bo1]R. N. Boyarinov, Sign change of the function S(t) on short intervals, Moscow Univ. Math. Bull. 65 (2010), no. 3, 132–134. [Bo2]R. N. Boyarinov, Omega theorems in the theory of the Riemann zeta function, Dokl. Math. 83 (2011), 314–315. [Bo3]R. N. Boyarinov, On large values of the function S(t) on short intervals, Math. Notes 89 (2011), 472–479. [Bo4]R. N. Boyarinov, On the value distribution of the Riemann zeta-function, Dokl. Math. 83 (2011), 290–292.
[2] [C1]M. E. Changa, Lower bounds for the Riemann zeta function on the critical line, Math. Notes 76 (2004), 859–864. · Zbl 1089.11046
[3] [C2]M. E. Changa, On a function-theoretic inequality, Russian Math. Surveys 60 (2005), no. 3, 564–565.
[4] [F]N. I. Feldman, Hilbert’s Seventh Problem, Moscow State Univ., Moscow, 1982 (in Russian). [Fe]S. J. Feng, On Karatsuba conjecture and the Lindel\"{}of hypothesis, Acta Arith. 114 (2004), 295–300.
[5] [FK]Y. V. Fyodorov and J. P. Keating, Freezing transition and extreme values random matrix theory, {\(\zeta\)}(1/2 + it), and disordered landscapes, arXiv:1211.6063 [math-ph] (2012). Large values of the Riemann zeta-function389
[6] [G]M. Z. Garaev, Concerning the Karatsuba conjectures, Taiwanese J. Math. 6 (2002), 573–580. · Zbl 1068.11054
[7] [GL]P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, Elsevier, 1987.
[8] [H]A. J. Harper, A note on the maximum of the Riemann zeta function, and logcorrelated random variables, arXiv:1304.0677 [math.NT] (2013).
[9] [K1]A. A. Karatsuba, Basic Analytic Number Theory, 2nd ed., Springer, Berlin, 1993.
[10] [K2]A. A. Karatsuba, On lower bounds for the Riemann zeta function, Dokl. Math. 63 (2001), 9–10.
[11] [K3]A. A. Karatsuba, Lower bounds for the maximum modulus of {\(\zeta\)}(s) in small domains of the critical strip, Math. Notes 70 (2001), 724–726. · Zbl 1137.11332
[12] [K4]A. A. Karatsuba, Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line, Izv. Math. 68 (2004), 1157–1163. · Zbl 1167.11315
[13] [K5]A. A. Karatsuba, Zero multiplicity and lower bound estimates of |{\(\zeta\)}(s)|, Funct. Approx. Comment. Math. 35 (2006), 195–207. · Zbl 1196.11118
[14] [KK]A. A. Karatsuba and M. A. Korolev, The argument of the Riemann zeta function, Russian Math. Surveys 60 (2005), no. 3, 433–488. [Ko1]M. A. Korolev, On large values of the function S(t) on short intervals, Izv. Math. 69 (2005), 113–122. [Ko2]M. A. Korolev, Sign changes of the function S(t) on short intervals, Izv. Math. 69 (2005), 719–731. [Ko3]M. A. Korolev, Gram’s law and Selberg’s conjecture on the distribution of zeros of the Riemann zeta function, Izv. Math. 74 (2010), 743–780. [Ko4]M. A. Korolev, On Gram’s law in the theory of the Riemann zeta function, Izv. Math. 76 (2012), 275–309. [Ko5]M. A. Korolev, On Karatsuba’s problem related to Gram’s law, Proc. Steklov Inst. Math. 276 (2012), 156–166.
[15] [L]R. S. Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. · Zbl 0203.35502
[16] [M]J. H. Mueller, On the Riemann zeta-function {\(\zeta\)}(s)–gaps between sign changes of S(t), Mathematika 29 (1982), 264–269. · Zbl 0492.10033
[17] [O]F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974. · Zbl 0303.41035
[18] [RS]J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. · Zbl 0122.05001
[19] [S1]A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. · Zbl 0061.08402
[20] [S2]A. Selberg, The zeta-function and the Riemann hypothesis, in: C. R. Dixi‘eme Congr‘es Math. Scandinaves (1946), Jul. Gjellerups Forlag, Copenhagen, 1947, 187–200.
[21] [S3]A. Selberg, Collected Papers, Vol. I, Springer, Berlin, 1989.
[22] [T1]K.-M. Tsang, Some Ω-theorems for the Riemann zeta-function, Acta Arith. 46 (1985-1986), 369–395.
[23] [T2]K.-M. Tsang, The large values of the Riemann zeta-function, Mathematika 40 (1993), 203–214. · Zbl 0788.11036
[24] [VK]S. M. Voronin and A. A. Karatsuba, The Riemann Zeta-Function, de Gruyter, Berlin, 1992.
[25] [W]S. Wedeniwski, Zetagrid–computational verification of the Riemann hypothesis, in: Conference in Number Theory in Honour of Professor H. C. Williams, Edmonton, Alberta, 2003. 390M. A. Korolev
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.