×

A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations. (English) Zbl 1381.11114

J. Number Theory 148, 537-592 (2015); erratum ibid. 151, 276-277 (2015).
Summary: Recently, it was conjectured that the first generalized Stieltjes constant at rational argument may be always expressed by means of Euler’s constant, the first Stieltjes constant, the \(\Gamma\)-function at rational argument(s) and some relatively simple, perhaps even elementary, function. This conjecture was based on the evaluation of \(\gamma_1(1 / 2)\), \(\gamma_1(1 / 3)\), \(\gamma_1(2 / 3)\), \(\gamma_1(1 / 4)\), \(\gamma_1(3 / 4)\), \(\gamma_1(1 / 6)\), \(\gamma_1(5 / 6)\), which could be expressed in this way. This article completes this previous study and provides an elegant theorem which allows to evaluate the first generalized Stieltjes constant at any rational argument. Several related summation formulae involving the first generalized Stieltjes constant and the Digamma function are also presented. In passing, an interesting integral representation for the logarithm of the \(\Gamma\)-function at rational argument is also obtained. Finally, it is shown that similar theorems may be derived for higher Stieltjes constants as well; in particular, for the second Stieltjes constant the theorem is provided in an explicit form.

MSC:

11Y60 Evaluation of number-theoretic constants
11M35 Hurwitz and Lerch zeta functions
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formula, Graphs and Mathematical Tables, Applied Mathematics Series, vol. 55 (1961), US Department of Commerce, National Bureau of Standards
[2] Adamchik, V., A class of logarithmic integrals, (Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (1997)), 1-8 · Zbl 0922.11114
[3] Addison, A. W., A series representation for Euler’s constant, Amer. Math. Monthly, 74, 823-824 (1967) · Zbl 0153.09102
[4] Ainsworth, O. R.; Howell, L. W., An integral representation of the generalized Euler-Mascheroni constants, 1-11 (1985), NASA Technical paper 2456
[5] Apostol, T. M., Introduction to Analytic Number Theory (1976), Springer-Verlag: Springer-Verlag New York Inc. · Zbl 0335.10001
[6] Barrow, D. F., Solution to problem No. 4353, Amer. Math. Monthly, 58, 116-117 (1951)
[7] Bateman, H.; Erdélyi, A., Higher Transcendental Functions (1955), McGraw-Hill Book Company, [in 3 volumes]
[8] Berndt, B. C., On the Hurwitz Zeta-function, Rocky Mountain J. Math., 2, 1, 151-157 (1972) · Zbl 0229.10023
[9] Binet, M. J., Mémoire sur les intégrales définies eulériennes et sur leur application à la théorie des suites, ainsi qu’à l’évaluation des fonctions des grands nombres, J. Éc. Polytech., XVI, 27, 123-343 (1839)
[10] Blagouchine, I. V., Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, Ramanujan J., 35, 1, 21-110 (2014) · Zbl 1336.33041
[11] Briggs, W. E., Some constants associated with the Riemann Zeta-function, Michigan Math. J., 3, 2, 117-121 (1955/56) · Zbl 0073.29303
[12] Campbell, R., Les intégrales eulériennes et leurs applications (1966), Dunod: Dunod Paris · Zbl 0174.36201
[13] Candelpergher, B.; Coppo, M.-A., A new class of identities involving Cauchy numbers, harmonic numbers and zeta values, Ramanujan J., 27, 305-328 (2012) · Zbl 1276.11148
[14] Chudakov, N. G., An Introduction to the Theory of Dirichlet \(L\)-Functions (1947), OGIZ Gostehizdat: OGIZ Gostehizdat Leningrad, URSS, [in Russian]
[15] Coffey, M. W., New summation relations for the Stieltjes constants, Proc. R. Soc. A, 462, 2563-2573 (2006) · Zbl 1149.65302
[16] Coffey, M. W., Series representations for the Stieltjes constants (2009)
[17] Coffey, M. W., The Stieltjes constants, their relation to the \(\eta_j\) coefficients, and representation of the Hurwitz zeta function, Analysis, 30, 4, 383-409 (2010) · Zbl 1235.11079
[18] Coffey, M. W., On representations and differences of Stieltjes coefficients, and other relations, Rocky Mountain J. Math., 41, 6, 1815-1846 (2011) · Zbl 1269.11087
[20] Comtet, L., Advanced Combinatorics. The Art of Finite and Infinite Expansions (1974), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht, Holland
[21] Connon, D. F., The difference between two Stieltjes constants (2009)
[22] Connon, D. F., Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions (2009)
[23] Connon, D. F., New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions (2009)
[24] Connon, D. F., Some applications of the Stieltjes constants (2009)
[25] Correspondance d’Hermite, de Stieltjes, Vols. 1, 2 (1905), Gauthier-Villars: Gauthier-Villars Paris
[26] Davis, H. T., The approximation of logarithmic numbers, Amer. Math. Monthly, 64, 8, 11-18 (1957), part II · Zbl 0083.12403
[27] Davis, P. J., Leonhard Euler’s integral: a historical profile of the Gamma function, Amer. Math. Monthly, 66, 849-869 (1959) · Zbl 0091.00506
[28] Dwigth, H. B., Tables of Integrals and Other Mathematical Data (1957), The Macmillan Company
[29] Espinosa, O.; Moll, V. H., On some integrals involving the Hurwitz zeta function: Part I, Ramanujan J., 6, 150-188 (2002) · Zbl 1019.33001
[31] Eulero, L., Introductio in analysin infinitorum, vols. I and II (1748), Apud Marcum-Michaelem Bousquet & Socios: Apud Marcum-Michaelem Bousquet & Socios Lausannæ
[32] Evgrafov, M. A.; Sidorov, Y. V.; Fedoriuk, M. V.; Shabunin, M. I.; Bezhanov, K. A., A Collection of Problems in the Theory of Analytic Functions (1969), Nauka: Nauka Moscow, USSR, [in Russian]
[33] Franel, J., Note no. 245, L’Intermédiaire des Math., II, 153-154 (1895)
[34] Gauss, C. F., Disquisitiones generales circa seriem infinitam \(1 + \frac{\alpha \beta}{1 \cdot \gamma} x + \frac{\alpha(\alpha + 1) \beta(\beta + 1)}{1 \cdot 2 \cdot \gamma(\gamma + 1)} x x + \frac{\alpha(\alpha + 1)(\alpha + 2) \beta(\beta + 1)(\beta + 2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma + 1)(\gamma + 2)} x^3 + \text{etc} \), (Commentationes Societatis Regiae Scientiarum Gottingensis recentiores. Commentationes Societatis Regiae Scientiarum Gottingensis recentiores, Classis Mathematicae, vol. II (1813), Königliche Gesellschaft der Wissenschaften: Königliche Gesellschaft der Wissenschaften Göttingen), 3-46, republished later in “Carl Friedrich Gauss Werke”, vol. 3, 1866, pp. 265-327
[35] Gerst, Some series for Euler’s constant, Amer. Math. Monthly, 76, 273-275 (1969) · Zbl 0174.09503
[36] Glaisher, G. W.L., On Dr. Vacca’s series for \(γ\), Q. J. Pure Appl. Math., 41, 365-368 (1910) · JFM 41.0498.05
[37] Gram, J. P., Note sur le calcul de la fonction \(\zeta(s)\) de Riemann, oversigt, K. Dan. Vidensk. Selsk. Forh., 305-308 (1895)
[38] Gunther, N. M.; Kuzmin, R. O., A Collection of Problems on Higher Mathematics, vol. 2 (1949), Gosudarstvennoe Izdatel’stvo Tehniko-Teoreticheskoj Literatury: Gosudarstvennoe Izdatel’stvo Tehniko-Teoreticheskoj Literatury Leningrad, USSR, [in Russian]
[39] Gunther, N. M.; Kuzmin, R. O., A Collection of Problems on Higher Mathematics, vol. 3 (1951), Gosudarstvennoe Izdatel’stvo Tehniko-Teoreticheskoj Literatury: Gosudarstvennoe Izdatel’stvo Tehniko-Teoreticheskoj Literatury Leningrad, USSR, [in Russian]
[40] Gut, M., Die Zetafunktion, die Klassenzahl und die Kronecker’sche Grenzformel eines beliebigen Kreiskörpers, Comment. Math. Helv., 1, 1, 160-226 (1929) · JFM 55.0109.04
[41] Hamming, R. W., Numerical Methods for Scientists and Engineers (1962), McGraw-Hill Book Company · Zbl 0952.65500
[42] Hardy, G. H., Note on Dr. Vacca’s series for \(γ\), Q. J. Pure Appl. Math., 43, 215-216 (1912) · JFM 43.0530.02
[43] Hardy, G. H., Divergent Series (1949), Oxford at the Clarendon Press · Zbl 0032.05801
[44] Hermite, C., Extrait de quelques lettres de M. Ch. Hermite à M.S. Pincherle, Ann. Mat. Pura Appl., III, V, 57-72 (1901) · JFM 31.0438.04
[45] Hurwitz, A., Einige Eigenschaften der Dirichlet’schen Functionen \(F(s) = \sum\begin{pmatrix} D \\ n \end{pmatrix} \cdot \frac{1}{n^s} \), die bei der Bestimmung der Classenanzahlen binärer quadratischer Formen auftreten, Z. Math. Phys., XXVII, 86-101 (1882)
[46] Israilov, M. I., On the Laurent decomposition of Riemann’s zeta function, Tr. Mat. Inst. Akad. Nauk SSSR, 158, 98-103 (1981), [in Russian] · Zbl 0477.10031
[47] Jensen, J. L.W. V., Sur la fonction \(\zeta(s)\) de Riemann, C. R. Hebd. Séances Acad. Sci., 104, 1156-1159 (1887) · JFM 19.0391.01
[48] Jacobsthal, E., Ueber die Eulersche Konstante, Math.-Naturwiss. Blätter, 9, 153-154 (1906)
[49] Jensen, J. L.W. V., Opgaver til løsning no. 34, Nyt Tidsskr. Math., Afd. B, 4, 54 (1893)
[50] Jensen, J. L.W. V., Note no. 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver, L’Intermédiaire Math., II, 346-347 (1895)
[51] Kenter, F. K., A matrix representation for Euler’s constant \(γ\), Amer. Math. Monthly, 106, 452-454 (1999) · Zbl 0979.11061
[52] Kluyver, J. C., Euler’s constant and natural numbers, Proc. K. Ned. Akad. Wet., 27, 1-2, 142-144 (1924)
[53] Kluyver, J. C., On certain series of Mr. Hardy, Proc. K. Ned. Akad. Wet., 27, 3-4, 314-323 (1924) · JFM 50.0160.01
[54] Kluyver, J. C., On certain series of Mr. Hardy, Q. J. Pure Appl. Math., 50, 185-192 (1927) · JFM 50.0160.01
[55] Kowalenko, V., Properties and applications of the reciprocal logarithm numbers, Acta Appl. Math., 109, 413-437 (2010) · Zbl 1208.11032
[57] Kreminski, R., Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp., 72, 1379-1397 (2003) · Zbl 1033.11043
[58] Lammel, E., Ein Beweis, dass die Riemannsche Zetafunktion \(\zeta(s)\) in \(| s - 1 | \leqslant 1\) keine Nullstelle besitzt, Univ. Nac. Tacuman Rev., Ser. A, 16, 209-217 (1966) · Zbl 0166.05301
[59] Landau, E., Ueber die zu einem algebraischen Zahlkörper gehörige Zetafunction und die Ausdehnung der Tschebyschefschen Primzahlentheorie auf das Problem der Vertheilung der Primideale, J. Reine Angew. Math., 125, 64-188 (1903)
[60] Lavrik, A. F., On the main term of the divisor’s problem and the power series of the Riemann’s zeta function in a neighbourhood of its pole, Tr. Mat. Inst. Akad. Nauk SSSR, 142, 165-173 (1976), [in Russian]
[61] Legendre, A. M., Exercices de calcul intégral sur divers ordres de transcendantes et sur les quadratures (1817), \(M^{me} V^e\) Courcier, Imprimeur-Libraire pour les Mathématiques, rue du Jardinet, no. 12, quartier Saint-André-des-Arc: \(M^{me} V^e\) Courcier, Imprimeur-Libraire pour les Mathématiques, rue du Jardinet, no. 12, quartier Saint-André-des-Arc Paris, Tomes I-III
[62] Legendre, A. M., Traité des fonctions elliptiques et des intégrales eulériennes (1828), Imprimerie de Huzard-Courcier: Imprimerie de Huzard-Courcier rue du Jardinet, no. 12, Paris, Tomes I-III
[63] Lerch, M., Bemerkungen über trigonometrische Reihen mit positiven Coefficienten, Sitz.ber. K. Böhm. Ges. Wiss., Math.-Nat.wiss. Cl. 1898, 1-19 (1899)
[64] Liang, J. J.Y.; Todd, J., The Stieltjes constants, J. Res. Natl. Bur. Stand., B Math. Sci., 76B, 3-4, 161-178 (1972) · Zbl 0257.10017
[65] Lindelöf, E., Le calcul des résidus et ses applications à la théorie des fonctions (1905), Gauthier-Villars, Imprimeur Libraire du Bureau des Longitudes, de l’École Polytechnique, Quai des Grands-Augustins: Gauthier-Villars, Imprimeur Libraire du Bureau des Longitudes, de l’École Polytechnique, Quai des Grands-Augustins Paris 55 · JFM 36.0468.01
[66] Malmsten, C. J.; Almgren, T. A.; Camitz, G.; Danelius, D.; Moder, D. H.; Selander, E.; Grenander, J. M.A.; Themptander, S.; Trozelli, L. M.; Föräldrar, Ä.; Ossbahr, G. E.; Föräldrar, D. H.; Ossbahr, C. O.; Lindhagen, C. A.; Syskon, Ä.; Lemke, O. V.; Fries, C.; Laurenius, L.; Leijer, E.; Gyllenberg, G.; Morfader, M. V.; Linderoth, A., Specimen Analyticum, theoremata quædam nova de integralibus definitis, summatione serierum earumque in alias series transformatione exhibens (April-June, 1842), excudebant Regiæ academiæ typographi: excudebant Regiæ academiæ typographi Upsaliæ, Dissertation, Uppsala, Sweden, in 8 parts
[67] Malmstén, C. J., De integralibus quibusdam definitis seriebusque infinitis, J. Reine Angew. Math., 38, 1-39 (1849), work dated at May 1, 1846 · ERAM 038.1035cj
[68] Markushevich, A. I., Theory of Functions of a Complex Variable (2005), AMS Chelsea Publishing, American Mathematical Society
[69] Mascheronio, L., Adnotationes ad calculum integralem Euleri in quibus nonnulla problemata ab Eulero proposita resolvuntur (1790), Ex Typographia Petri Galeatii: Ex Typographia Petri Galeatii Ticini
[70] Miller, J.; Adamchik, V. S., Derivatives of the Hurwitz Zeta function for rational arguments, J. Comput. Appl. Math., 100, 201-206 (1998) · Zbl 0928.11037
[71] Mitrović, D., The signs of some constants associated with the Riemann zeta function, Michigan Math. J., 9, 395-397 (1962) · Zbl 0107.06201
[72] Nan-You, Z.; Williams, K. S., Some results on the generalized Stieltjes constant, Analysis, 14, 147-162 (1994) · Zbl 0808.11054
[73] Nielsen, N., En Række for Eulers Konstant, Nyt Tidsskr. Math., Afd. B, 8, 10-12 (1897) · JFM 28.0235.02
[74] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I., Integrals and Series, vols. I-IV (1992), Gordon and Breach Science Publishers · Zbl 0786.44003
[75] Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, Monatsberichte der Königlich Preußischen, 136-144 (1859), Akademie der Wissenschaften zu Berlin
[76] Sandham, H. F., Problem No. 4353: Euler’s constant, Amer. Math. Monthly, 56, 414 (1949)
[78] Schlömilch, O., Ueber eine Eigenschaft gewisser Reihen, Z. Math. Phys., III, 130-132 (1858)
[79] Spiegel, M. R., Theory and Problems of Complex Variables with an Introduction to Conformal Mapping and Its Application (1968), McGraw-Hill
[80] Srivastava, H. M.; Choi, J., Series Associated with the Zeta and Related Functions (2001), Kluwer Academic Publishers: Kluwer Academic Publishers The Netherlands · Zbl 1014.33001
[81] Stankus, É., A note about coefficients of Laurent series of the Riemann zeta function, Zap. Nauchn. Sem. LOMI, 121, 103-107 (1983), [in Russian] · Zbl 0524.10035
[82] Titchmarsh, E. C., The Theory of the Riemann Zeta-Function (1986), Clarendon Press: Clarendon Press Oxford · Zbl 0601.10026
[83] Turnbull, H. W., The Correspondence of Isaac Newton (1977), Royal Society at the University Press: Royal Society at the University Press Cambridge, vols. 1-7
[84] Vacca, G., A new series for the Eulerian constant, Q. J. Pure Appl. Math., 41, 363-364 (1910) · JFM 41.0498.04
[85] Volkovyskii, L. I.; Lunts, G. L.; Aramanovich, I. G., A Collection of Problems on Complex Analysis (1965), Pergamon Press: Pergamon Press United Kingdom · Zbl 0178.41302
[86] Whittaker, E.; Watson, G. N., A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions (1920), Cambridge at the University Press: Cambridge at the University Press Great Britain · JFM 47.0190.17
[87] Wieleitner, H., Geschichte der Mathematik, Berlin (1923), [in 2 vols.]
[88] Wilton, J. R., A note on the coefficients in the expansion \(\zeta(s, x)\) in powers of \(s - 1\), Q. J. Pure Appl. Math., 50, 329-332 (1927) · JFM 53.0312.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.