Hellinger integrals, contiguity and entire separation. (English) Zbl 0638.60001

Let P, Q and R be three probability measures on some probability measure space such that R dominates both P and Q. Let X and Y be Radon-Nikodym derivatives of P and Q w.r.t. R. Then the integrals \(\int_{A}X\) s \(Y^{1-s} dR\) and \(\int X\) s \(Y^{1-s} dR\), where \(0<s<1\) and A is an event, define respectively a Hellinger measure and a Hellinger integral of order s.
Hellinger integrals of distribution laws are estimated in terms of Hellinger integrals of the corresponding conditional distributions belonging to an increasing sequence of sub-sigma-algebras. These estimates are then employed to derive necessary and sufficient conditions for contiguity and entire separation of two sequences of probability measures.
Reviewer: A.Mukherjea


60A10 Probabilistic measure theory
60E99 Distribution theory
62B99 Sufficiency and information
Full Text: EuDML


[1] G. K. Eagleson: An extended dichotomy theorem for sequences of pairs of Gaussian measures. Ann. Probab. 9 (1981), 3, 453-459. · Zbl 0462.60042 · doi:10.1214/aop/1176994417
[2] G K. Eagleson, I. Memin: Sur la contiguite de deux suites de mesures: generalization d’un theoreme de Kabonov-Liptser-Shiryayev, Seminaire Probability XVI. Lecture. Notes 920, Springer-Verlag, Berlin-Heidelberg-New York 1982. · Zbl 0484.60032
[3] J. Kerstan, F. Liese: Zur Existenz bedingter Verteilungsgesetze I. Math. Nachrichten 61 (1974), 279-310. · Zbl 0287.60006 · doi:10.1002/mana.19740610121
[4] F. Liese: Estimates of Hcliinger integrals of discrete time stochastic processes, Forschungserg. FSU Jena Nr. 84/51 and Proc. ”Colloquium on Goodness of Fit” Debrecen 1984, 355-368.
[5] F. Liese: Hellinger integrals, error probabilities and contiguity of Gaussian processes with independent increments and Poisson processes. Journal of Information Processing and Cybernetics-EIK 21 (1985), 297-312. · Zbl 0582.62075
[6] R. Ch. Liptser F. Pukelsheim, A. N. Shiryayev: On necessary and sufficient conditions for contiguity and entire separation of probability measures. Uspeki Math. Nauk 37 (6) (1982), 97-124. · Zbl 0509.60038
[7] R. Ch. Liptser, A. N. Shiryayev: Statistics of Random Processes, Vol. I, II. Springer-Verlag, Berlin-Heidelberg-New York 1978. · Zbl 0369.60001
[8] T. Nemetz: Equivalence orthogonality dichotomies of probability measures. Proc. Coll. on Limit Theorems of Prob. Theory and Stat. Keszthely 1974. · Zbl 0314.60005
[9] C. M. Newman: The inner product of path space measures corresponding to random processes with independent increments. Bull. Amer. Math. Soc. 78 (1972), 2. · Zbl 0233.60041 · doi:10.1090/S0002-9904-1972-12952-5
[10] S. Orey: Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand, New York-Cincinnati-Toronto -Melbourne 1971. · Zbl 0295.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.