×

zbMATH — the first resource for mathematics

A Green’s function for non-homogeneous random walks on free products. (English) Zbl 0638.60010
For \(\Gamma\) the free product of N groups each having finite orders and a non-homogeneous function \(\alpha\) supported entirely on words of length one in \(\Gamma\), a Green’s function corresponding to \(\alpha\) is developed. The L 2-spectrum of \(\alpha\) is completely developed for the case \(N=2\) and is characterized in general. A method of developing the recursion coefficients of the orthogonal polynomials associated with \(\alpha\) is explored as are the associated spherical functions.
Reviewer: A.R.Trenholme

MSC:
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Cartwright, D.I., Soardi P.M.: Harmonic analysis on the free product of two cyclic groups. J. Funct. Anal.65, 147-171, (1986) · Zbl 0619.43003 · doi:10.1016/0022-1236(86)90007-8
[2] Chihara, T.S.: An Introduction to Orthogonal Polynomials. New York; Gordon and Breach 1978 · Zbl 0389.33008
[3] Chiswell, I.M.: Abstract length functions in groups. Math. Proc. Camb. Philos. Soc.80, 451-463 (1976) · Zbl 0351.20024 · doi:10.1017/S0305004100053093
[4] Cohen, J.M., De Michele, L.: The radial Fourier-Stieltijes algebra of free groups. Contemp. Math.10, 33-40 (1982) · Zbl 0488.43007
[5] Cohen, J. M., Trenholme, A.R.: Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis. J. Funct. Anal.59, 175-184 (1984) · Zbl 0549.43002 · doi:10.1016/0022-1236(84)90071-5
[6] FigĂ -Talamanca, A., Picardello, M.: Harmonic analysis on free groups. Lect. Notes Pure Appl. Math. Volume 87. New York Basel: Marcel Dekker 1983 · Zbl 0536.43001
[7] Haagerup, U.: An example of a non-nuclear C:-algebra which has the metric approximation property. Invent. Math.50, 279-293 (1979) · Zbl 0408.46046 · doi:10.1007/BF01410082
[8] Kuhn, G., Soardi, P.M.: The plancherel measure for polygonal graphs. Annali di Matematica pur ed applicata (IV),134, 393-401 (1983) · Zbl 0536.43021 · doi:10.1007/BF01773513
[9] McLaughlin, J.C.: Random walks and convolution operators on free products. Doctoral Dissertation, New York University, 1986
[10] Pytlik, T.: Radial functions on free groups and a decomposition of the regular representation into irreducible components. J. Reine Angew. Math.326, 124-135 (1981) · Zbl 0464.22004 · doi:10.1515/crll.1981.326.124
[11] Rivlin, T.J.: The chebyshev polynomials. New York: John Wiley and Sons 1968 · Zbl 0172.19201
[12] Steiger, T.: Harmonic analysis for anisotropic random walks on homogeneous trees, Doctoral Dissertation, Washington University, St. Louis, 1985
[13] Trenholme, A.R.: Maximal abelian subalgebras of function algebras associated with free products. J. Funct Anal.79, 342-350 (1988) · Zbl 0665.46049 · doi:10.1016/0022-1236(88)90017-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.