The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. (English) Zbl 1302.81005

Summary: The AcerMC Monte Carlo generator is dedicated to the generation of Standard Model background processes which were recognised as critical for the searches at LHC, and generation of which was either unavailable or not straightforward so far. The program itself provides a library of the massive matrix elements (coded by MADGRAPH) and native phase space modules for generation of a set of selected processes. The hard process event can be completed by the initial and the final state radiation, hadronisation and decays through the existing interface with either PYTHIA, HERWIG or ARIADNE event generators and (optionally) TAUOLA and PHOTOS. Interfaces to all these packages are provided in the distribution version. The phase-space generation is based on the multi-channel self-optimising approach using the modified Kajantie-Byckling formalism for phase space construction and further smoothing of the phase space was obtained by using a modified ac-VEGAS algorithm. An additional improvement in the recent versions is the inclusion of the consistent prescription for matching the matrix element calculations with parton showering for a select list of processes.


81-04 Software, source code, etc. for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory
81V22 Unified quantum theories
65C05 Monte Carlo methods
81-05 Experimental work for problems pertaining to quantum theory
Full Text: DOI arXiv


[1] Sjostrand, T.; Mrenna, S.; Skands, P. Z., PYTHIA 6.4 physics and manual, J. High Energy Phys., 0605, 026, (2006) · Zbl 1368.81015
[2] Corcella, G.; Knowles, I.; Marchesini, G.; Moretti, S.; Odagiri, K., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), J. High Energy Phys., 0101, 010, (2001)
[3] Gleisberg, T.; Hoeche, S.; Krauss, F.; Schonherr, M.; Schumann, S., Event generation with SHERPA 1.1, J. High Energy Phys., 0902, 007, (2009)
[4] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., Madgraph 5: going beyond, J. High Energy Phys., 1106, 128, (2011) · Zbl 1298.81362
[5] Badger, S.; Campbell, J. M.; Ellis, R., QCD corrections to the hadronic production of a heavy quark pair and a \(W\)-boson including decay correlations, J. High Energy Phys., 1103, 027, (2011) · Zbl 1301.81285
[6] Frixione, S.; Webber, B. R., Matching NLO QCD computations and parton shower simulations, J. High Energy Phys., 06, 029, (2002)
[7] Frixione, S.; Nason, P.; Oleari, C., Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys., 0711, (2007), 070 (Temporary entry). arXiv:0709.2092. http://dx.doi.org/10.1088/1126-6708/2007/11/070
[8] Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Pittau, R., Amc@NLO predictions for wjj production at the tevatron, J. High Energy Phys., 1202, 048, (2012)
[9] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, J. High Energy Phys., 1006, 043, (2010) · Zbl 1290.81155
[10] Hoche, S.; Krauss, F.; Schonherr, M.; Siegert, F., NLO matrix elements and truncated showers, J. High Energy Phys., 1108, 123, (2011)
[11] E. Boos, M. Dobbs, W. Giele, I. Hinchliffe, J. Huston, et al., Generic user process interface for event generators. arXiv:hep-ph/0109068.
[12] Lonnblad, L., ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun., 71, 15-31, (1992)
[13] Jadach, S.; Was, Z.; Decker, R.; Kuhn, J. H., The tau decay library TAUOLA: version 2.4, Comput. Phys. Commun., 76, 361-380, (1993)
[14] Barberio, E.; Was, Z., PHOTOS: a universal Monte Carlo for QED radiative corrections. version 2.0, Comput. Phys. Commun., 79, 291-308, (1994)
[15] H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations.
[16] Lepage, G. P., A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978), Revised version · Zbl 0377.65010
[17] Stelzer, T.; Long, W., Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun., 81, 357-371, (1994)
[18] Kersevan, B. P.; Richter-Was, E., The Monte Carlo event generator acermc version 1.0 with interfaces to PYTHIA 6.2 and HERWIG 6.3, Comput. Phys. Commun., 149, 142-194, (2003)
[19] ATLAS detector and physics performance: Technical Design Report, 2, Technical Design Report ATLAS, CERN, Geneva, 1999, electronic version not available.
[20] Technical proposal, LHC Tech. Proposal, CERN, Geneva, 1994, cover title: CMS, the Compact Muon Solenoid: technical proposal.
[21] The ATLAS Collaboration, Expected performance of the ATLAS experiment—Detector, Trigger and Physics, CERN, Geneva, 2009. arXiv:0901.0512.
[22] Kersevan, B. P.; Richter-Was, E., What is the W b anti-b, Z b anti-b or t anti-t b anti-b irreducible background to the light Higgs boson searches at LHC?, Eur. Phys. J., C25, 379-389, (2002)
[23] Richter-Was, E.; Sapinski, M., Search for the SM and MSSM Higgs boson in the t anti-t H, H \(\rightarrow\) b anti-b channel, Acta Phys. Polon., B30, 1001-1040, (1999)
[24] B.P. Kersevan, E. Richter-Was, The qqbar \(\rightarrow\) w(\(\rightarrow\) l nu)g*(\(\rightarrow\);bb) process: matrix element implementation to pythia 6.1, Tech. Rep. ATL-PHYS-2001-020, CERN, Geneva, revised version number 2 submitted on 2001-11-11 09:35:25 (Jul 2001).
[25] A. Blondel, A. Clark, F. Mazzucato, Studies on the measurement of the sm higgs self-couplings., Tech. Rep. ATL-PHYS-2002-029, CERN, Geneva, revised version number 1 submitted on 2002-11-07 17:49:13 (Feb 2002).
[26] B.P. Kersevan, E. Richter-Was, The gg, qqbar \(\rightarrow\) z/gamma*(\(\rightarrow\) l l ) b bbar process: matrix element implementation to pythia 6.1, Tech. Rep. ATL-PHYS-2001-021, CERN, Geneva, revised version number 2 submitted on 2001-11-11 10:59:23 (Jul 2001).
[27] Kersevan, B. P.; Hinchliffe, I.; Mijovic, L., A consistent prescription for combining perturbative calculations and parton showers in case of associated Z0 b anti-b hadroproduction, J. High Energy Phys., 0807, 032, (2008)
[28] Gunion, J., Detecting an invisibly decaying Higgs boson at a hadron supercollider, Phys. Rev. Lett., 72, 199-202, (1994)
[29] Kauer, N.; Zeppenfeld, D., Finite width effects in top quark production at hadron colliders, Phys. Rev., D65, 014021, (2002), 32 pages, 11 figures, 7 tables; minor changes, reference added, to be published in Phys. Rev. D Report-no: MADPH-01-1205. arXiv:hep-ph/0107181. http://dx.doi.org/10.1103/PhysRevD.65.014021
[30] Pierzchala, T.; Richter-Was, E.; Was, Z.; Worek, M., Spin effects in tau lepton pair production at LHC, Acta Phys. Polon., B32, 1277-1296, (2001)
[31] Lai, H., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J., C12, 375-392, (2000)
[32] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, et al. CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space, User’s manual for version 33. arXiv:hep-ph/9908288.
[33] B.P. Kersevan, E. Richter-Was, The gg,qqbar \(\rightarrow\) t tbar b bbar process: matrix element implementation to pythia6.1, Tech. Rep. ATL-PHYS-2001-022, CERN, Geneva (Nov 2001).
[34] Beenakker, W.; Dittmaier, S.; Kramer, M.; Plumper, B.; Spira, M., Higgs radiation off top quarks at the tevatron and the LHC, Phys. Rev. Lett., 87, 201805, (2001)
[35] E. Richter-Was, D. Froidevaux, L. Poggioli, Atlfast 2.0 a fast simulation package for atlas, Tech. Rep. ATL-PHYS-98-131, CERN, Geneva (Nov 1998).
[36] Froidevaux, D.; Richter-Was, E., Is the channel H \(\rightarrow\) b anti-b observable at LHC?, Z. Phys., C67, 213-226, (1995)
[37] Richter-Was, E., Revisiting the observability of the W H and Z H, H \(\rightarrow\) b anti-b channel in 14-TeV p p and 2-TeV p anti-p collisions (l b anti-b and l l b anti-b final states), Acta Phys. Polon., B31, 1931-1972, (2000)
[38] Kersevan, B. P.; Hinchliffe, I., A consistent prescription for the production involving massive quarks in hadron collisions, J. High Energy Phys., 0609, 033, (2006)
[39] M. Whalley, D. Bourilkov, R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE. arXiv:hep-ph/0508110.
[40] Byckling, E.; Kajantie, K., N-particle phase space in terms of invariant momentum transfers, Nuclear Phys., B9, 568-576, (1969)
[41] S. Jadach, Practical guide to Monte Carlo. arXiv:physics/9906056. · Zbl 1039.65003
[42] Skrzypek, M.; Was, Z., How to generate four fermion phase space, Comput. Phys. Commun., 125, 8-20, (2000) · Zbl 1050.81505
[43] Kleiss, R.; Pittau, R., Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun., 83, 141-146, (1994)
[44] Jadach, S., Foam: multidimensional general purpose Monte Carlo generator with selfadapting symplectic grid, Comput. Phys. Commun., 130, 244-259, (2000) · Zbl 0956.82016
[45] Hilgart, J.; Kleiss, R.; Le Diberder, F., An electroweak Monte Carlo for four fermion production, Comput. Phys. Commun., 75, 191-218, (1993)
[46] Berends, F. A.; Pittau, R.; Kleiss, R., Excalibur: a Monte Carlo program to evaluate all four fermion processes at LEP-200 and beyond, Comput. Phys. Commun., 85, 437-452, (1995)
[47] Nyborg, P.; Song, H.; Kernan, W.; Good, R., Phase – space considerations for four-particle final states, Phys. Rev., 140, B914-B920, (1965)
[48] C. Everett, E. Cashwell, A third Monte Carlo sampler (a revision and extension of samplers 1 and 2).
[49] Lichard, P., Are the production and decay of a resonance always independent?, Acta Phys. Slov., 49, 215-230, (1999)
[50] B.C. Carlson, Numerical computation of real or complex elliptic integrals. arXiv:arXiv:math/9409227. · Zbl 0827.65024
[51] Appell, P.; de Fériet, J. K., Fonctions hypergéométriques et hypersphériques: polynomes d’hermite, (1926), Gauthier-Villars Paris · JFM 52.0361.13
[52] Zwillinger, D.; Company, C. R., CRC standard mathematical tables and formulae, in: CRC standard mathematical tables and formulae, no. bd. 31, (2003), CRC Press, URL http://books.google.ch/books?id=9zXt1yFQE2UC · Zbl 1084.00003
[53] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical recipes in Fortran 77: the art of scientific computing, (1992), Cambridge University Press, URL http://www.worldcat.org/isbn/052143064X · Zbl 0778.65002
[54] T. Ohl, Electroweak gauge bosons at future electron positron colliders, LaTeX Report-no: LC-REV-1999-005, IKDA 99/11, 149 pages. arXiv:hep-ph/9911437.
[55] Jadach, S.; Richter-Was, E.; Ward, B.; Was, Z., Monte Carlo program BHLUMI-2.01 for Bhabha scattering at low angles with yennie – frautschi – suura exponentiation, Comput. Phys. Commun., 70, 305-344, (1992)
[56] Bengtsson, H., The Lund Monte Carlo for high p(t) physics, Comput. Phys. Commun., 31, 323, (1984)
[57] Mangano, M. L., The color structure of gluon emission, Nuclear Phys., B309, 461, (1988)
[58] Caravaglios, F.; Mangano, M. L.; Moretti, M.; Pittau, R., A new approach to multijet calculations in hadron collisions, Nuclear Phys., B539, 215-232, (1999)
[59] Odagiri, K., Color connection structure of supersymmetric QCD (2 \(\rightarrow\) 2) processes, J. High Energy Phys., 9810, 006, (1998)
[60] Field, J. H., A new kinematical derivation of the Lorentz transformation and the particle description of light. oai:cds.cern.ch:800767, Helv. Phys. Acta, 70, 542-564, (2004), physics/0410262. UGVA-DPNC-169, 23 p · Zbl 0875.83016
[61] Burkhardt, H.; Pietrzyk, B., Update of the hadronic contribution to the QED vacuum polarization, Phys. Lett., B513, 46-52, (2001)
[62] Marciano, W. J., Flavor thresholds and lambda in the modified minimal subtraction prescription, Phys. Rev., D29, 580, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.