Varjú, Péter Pál Random walks in Euclidean space. (English) Zbl 1315.60034 Ann. Math. (2) 181, No. 1, 243-301 (2015). Let \(X_1, X_2,\dots\) be independent identically distributed random isometries of the Euclidean space \(R^d\). Let \(x_0\in R^d\) be any point, and consider the sequence of points \[ Y=x_0, \dots, Y_e(X_{l-1}(\dots (x_0))), \dots. \]The author’s main objective is to obtain a local limit theorem in the following sense. Under some conditions on \(Y_0\) and \(X\) there are \(v_0\in \mathbb{R}^d\) and \(c>0\) depending only on the distribution of \(X_j\) such that \[ \lim_{l\to0}l^{d/2}E[f(Y_0-lv_0)]=c\int f(r)\,dx, \] where \(f\) is any continuous and compactly supported function. Reviewer: N. G. Gamkrelidze (Moskva) Cited in 5 Documents MSC: 60F05 Central limit and other weak theorems 60G50 Sums of independent random variables; random walks Keywords:random walks; Euclidean isometries; local limit theorem × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] M. Ådahl, I. Melbourne, and M. Nicol, ”Random iteration of Euclidean isometries,” Nonlinearity, vol. 16, iss. 3, pp. 977-987, 2003. · Zbl 1037.37006 · doi:10.1088/0951-7715/16/3/311 [2] V. I. Arnolcprimed and A. L. Krylov, ”Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain,” Dokl. Akad. Nauk SSSR, vol. 148, pp. 9-12, 1963. · Zbl 0237.34008 [3] P. Baldi, P. Bougerol, and P. Crépel, ”Théorème central limite local sur les extensions compactes de \({\mathbf R}^d\),” Ann. Inst. H. Poincaré Sect. B, vol. 14, iss. 1, pp. 99-111, 1978. · Zbl 0382.60013 [4] H. Bass, ”Theorems of Jordan and Burnside for algebraic groups,” J. Algebra, vol. 82, iss. 1, pp. 245-254, 1983. · Zbl 0506.20016 · doi:10.1016/0021-8693(83)90182-5 [5] J. Bourgain and A. Gamburd, ”On the spectral gap for finitely-generated subgroups of \( SU(2)\),” Invent. Math., vol. 171, iss. 1, pp. 83-121, 2008. · Zbl 1135.22010 · doi:10.1007/s00222-007-0072-z [6] J. Bourgain and A. Gamburd, ”A spectral gap theorem in \({ SU}(d)\),” J. Eur. Math. Soc. \((\)JEMS\()\), vol. 14, iss. 5, pp. 1455-1511, 2012. · Zbl 1254.43010 · doi:10.4171/JEMS/337 [7] E. Breuillard, Random walks on Lie groups. · Zbl 1083.60008 [8] D. L. Burkholder, ”Distribution function inequalities for martingales,” Ann. Probability, vol. 1, pp. 19-42, 1973. · Zbl 0301.60035 · doi:10.1214/aop/1176997023 [9] J. -P. Conze and Y. Guivarc’h, ”Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts,” Discrete Contin. Dyn. Syst., vol. 33, iss. 9, pp. 4239-4269, 2013. · Zbl 1329.37004 · doi:10.3934/dcds.2013.33.4239 [10] C. M. Dawson and M. A. Nielsen, ”The Solovay-Kitaev algorithm,” Quantum Inf. Comput., vol. 6, iss. 1, pp. 81-95, 2006. · Zbl 1152.81706 [11] D. Dolgopyat, ”On mixing properties of compact group extensions of hyperbolic systems,” Israel J. Math., vol. 130, pp. 157-205, 2002. · Zbl 1005.37005 · doi:10.1007/BF02764076 [12] L. G. Gorostiza, ”The central limit theorem for random motions of \(d\)-dimensional Euclidean space,” Ann. Probability, vol. 1, pp. 603-612, 1973. · Zbl 0263.60010 · doi:10.1214/aop/1176996889 [13] M. Gotô, ”A Theorem on compact semi-simple groups,” J. Math. Soc. Japan, vol. 1, pp. 270-272, 1949. · Zbl 0041.36208 · doi:10.2969/jmsj/00130270 [14] A. Grintsyavichyus, ”The domain of normal attraction of a stable law for the group of motions of a Euclidean space,” Litovsk. Mat. Sb., vol. 25, iss. 3, pp. 39-52, 1985. [15] Y. Guivarc’h, ”Equirépartition dans les espaces homogènes,” in Théorie Ergodique, New York: Springer-Verlag, 1976, vol. 532, pp. 131-142. · Zbl 0368.28024 · doi:10.1007/BFb0080176 [16] D. A. Kavzdan, ”Uniform distribution on a plane,” Trudy Moskov. Mat. Ob\vs\vc., vol. 14, pp. 299-305, 1965. · Zbl 0225.26018 [17] . Y. S. Khokhlov, ”A local limit theorem for the composition of random motions of Euclidean space,” Dokl. Akad. Nauk SSSR, vol. 260, iss. 2, pp. 295-299, 1981. · Zbl 0494.60026 [18] . Y. S. Khokhlov, ”The domain of normal attraction of a semistable distribution on a semidirect product compact group and \(\mathbb R^d\),” J. Math. Sci., vol. 76, iss. 1, pp. 2147-2152, 1995. · doi:10.1007/BF02363227 [19] Y. A. Kitaev, ”Quantum computations: algorithms and error correction,” Uspekhi Mat. Nauk, vol. 52, iss. 6(318), pp. 53-112, 1997. · Zbl 0917.68063 · doi:10.1070/RM1997v052n06ABEH002155 [20] V. M. Maximov, ”Local theorems for Euclidean motions. I,” Z. Wahrsch. Verw. Gebiete, vol. 51, iss. 1, pp. 27-38, 1980. · Zbl 0427.60010 · doi:10.1007/BF00533814 [21] S. T. Rachev and J. E. Yukich, ”Rates of convergence of \(\alpha\)-stable random motions,” J. Theoret. Probab., vol. 4, iss. 2, pp. 333-352, 1991. · Zbl 0724.60019 · doi:10.1007/BF01258741 [22] B. Roynette, ”Théorème central-limite pour le groupe des déplacements de \({\mathbf R}^d\),” Ann. Inst. H. Poincaré Sect. B, vol. 10, pp. 391-398 (1975), 1974. · Zbl 0324.60026 [23] V. N. Tutubalin, ”The central limit theorem for random motions of Euclidean space,” Vestnik Moskov. Univ. Ser. I Mat. Meh., vol. 22, iss. 6, pp. 100-108, 1967. [24] P. Pál. Varjú, ”Random walks in compact groups,” Doc. Math., vol. 18, pp. 1137-1175, 2013. · Zbl 1278.60011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.