Cherif, A. Mohammed; Mustapha, Djaa On generalized \(f\)-harmonic morphisms. (English) Zbl 1313.53075 Commentat. Math. Univ. Carol. 55, No. 1, 17-27 (2014). The authors study the characterization of generalized \(f\)-harmonic morphisms between Riemannian manifolds. It is proved that a map between Riemannian manifolds is an \(f\)-harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. As well, the authors present new properties which generalize the Fuglede-Ishihara characterization for harmonic morphisms [T. Ishihara, J. Math. Kyoto Univ. 19, 215–229 (1979; Zbl 0421.31006); B. Fuglede, Elliptische Differentialgleichungen, Vortr. Tag. Rostock 1977, 97–104 (1978; Zbl 0408.31011)]. Reviewer: Vladimir Balan (Bucureşti) Cited in 2 Documents MSC: 53C43 Differential geometric aspects of harmonic maps 58E20 Harmonic maps, etc. Keywords:\(f\)-harmonic morphism; \(f\)-harmonic map; horizontally weakly conformal map Citations:Zbl 0421.31006; Zbl 0408.31011 PDFBibTeX XMLCite \textit{A. M. Cherif} and \textit{D. Mustapha}, Commentat. Math. Univ. Carol. 55, No. 1, 17--27 (2014; Zbl 1313.53075) Full Text: Link