zbMATH — the first resource for mathematics

State elimination for nonlinear neutral state-space systems. (English) Zbl 1309.93071
Summary: The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.
93C10 Nonlinear systems in control theory
34K40 Neutral functional-differential equations
93B25 Algebraic methods
Full Text: Link
[1] Anguelova, M., Wennberg, B.: State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44 (2008), 1373-1378. · Zbl 1283.93084
[2] Becker, T., Weispfenning, V.: Gröbner Bases. Springer-Verlag, New York 1993. · Zbl 0772.13010
[3] Buchberger, B., Winkler, F.: Gröbner Bases and Applications. Cambridge University Press, Cambridge 1998. · Zbl 0883.00014
[4] Cohn, P. M.: Free Rings and Their Relations. Academic Press, London 1985. · Zbl 0659.16001
[5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Communications and Control Engineering. Springer-Verlag, London 2007. · Zbl 1130.93030
[6] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, New York 2007. · Zbl 1118.13001
[7] Diop, S.: Elimination in control theory. Math. Contr. Signals Syst. 4 (1991), 72-86. · Zbl 0727.93025
[8] Glad, S. T.: Nonlinear regulators and Ritt’s remainder algorithm. Analysis of Controlled Dynamical Systems (B. Bournard, B. Bride, J. P. Gauthier, and I. Kupka, Progress in systems and control theory 8, Birkhäuser, Boston 1991, pp. 224-232 · Zbl 0794.93042
[9] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598-603. · Zbl 0851.93018
[10] Halás, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181-1190. · Zbl 1283.93077
[11] Halás, M.: Nonlinear time-delay systems: a polynomial approach using Ore algebras. Topics in Time-Delay Systems: Analysis, Algorithms and Control (J. J. Loiseau, W. Michiels, S. Niculescu, and R. Sipahi, Lecture Notes in Control and Information Sciences, Springer, 2009.
[12] Halás, M.: Computing an input-output representation of a neutral state-space system. IFAC Workshop on Time Delay Systems, Grenoble 2013.
[13] Halás, M., Anguelova, M.: When retarded nonlinear time-delay systems admit an input-output representation of neutral type. Automatica 49 (2013) 561-567. · Zbl 1259.93066
[14] Halás, M., Kotta, Ü.: A transfer function approach to the realisation problem of nonlinear systems. Internat. J. Control 85 (2012), 320-331. · Zbl 1282.93078
[15] Halás, M., Kotta, Ü., Moog, C. H.: Transfer function approach to the model matching problem of nonlinear systems. 17th IFAC World Congress, Seoul 2008.
[16] Halás, M., Moog, C. H.: A polynomial solution to the model matching problem of nonlinear time-delay systems. European Control Conference, Budapest 2009.
[17] Huba, M.: Comparing 2DOF PI and predictive disturbance observer based filtered PI control. J. Process Control 23 (2013), 1379-1400.
[18] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. Control Lett. 58 (2009), 646-651. · Zbl 1184.93025
[19] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849. · Zbl 1205.93027
[20] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: The structure of nonlinear time-delay systems. Kybernetika 36 (2000), 53-62. · Zbl 1249.93102
[21] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: Observability and observers for nonlinear systems with time delays. Kybernetika 38 (2002), 445-456. · Zbl 1265.93060
[22] Ohtsuka, T.: Model structure simplification of nonlinear systems via immersion. IEEE Trans. Automat. Control 50 (2005), 607-618. · Zbl 1365.93061
[23] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463-477. · Zbl 0001.26601
[24] Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(1933), 480-508. · Zbl 0007.15101
[25] Picard, P., Lafay, J. F., Kučera, V.: Model matching for linear systems with delays and 2D systems. Automatica 34 (1998), 183-191. · Zbl 0937.93007
[26] Rudolph, J.: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353-383. · Zbl 0806.93012
[27] Walther, U., Georgiou, T. T., Tannenbaum, A.: On the computation of switching surfaces in optimal control: a Gröbner basis approach. IEEE Trans. Automat. Control 46 (2001), 534-540. · Zbl 0998.49023
[28] Xia, X., Márquez-Martínez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549-1555. · Zbl 1017.93031
[29] Zhang, J., Xia, X., Moog, C. H.: Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Automat. Control 51 (2006), 371-375. · Zbl 1366.93133
[30] Zheng, Y., Willems, J., Zhang, C.: A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control 46 (2001), 1782-1788. · Zbl 1175.93045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.