Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria. (English) Zbl 1310.34089


34H10 Chaos control for problems involving ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34H15 Stabilization of solutions to ordinary differential equations
49K15 Optimality conditions for problems involving ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: Link


[1] Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6 (1994), 125-142. · doi:10.1007/BF00044981
[2] Han, S. K., Kerrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75 (1995), 3190-3193. · doi:10.1103/PhysRevLett.75.3190
[3] Cuomo, K. M., Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71 (1993), 65-68. · doi:10.1103/PhysRevLett.71.65
[4] Nik, H. Saberi, Gorder, R. A. Van: Competitive modes for the Baier-Sahle hyperchaotic flow in arbitrary dimensions. Nonlinear Dyn. 74 (2013), 3, 581-590. · Zbl 1279.34063 · doi:10.1007/s11071-013-0990-9
[5] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196-1199. · Zbl 0964.37502 · doi:10.1103/PhysRevLett.69.3479
[6] Azhmyakov, V., Basin, M. V., Gil-Garcia, A. E.: Optimal control processes associated with a class of discontinuous control systems: applications to sliding mode dynamics. Kybernetika 50 (2014), 1, 5-18. · Zbl 1302.93222
[7] Jiang, Y., Dai, J.: Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. Kybernetika 47 (2011), 4, 612-629. · Zbl 1227.93033
[8] Wang, H., Han, Z Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dyn. 55 (2009), 323-328. · Zbl 1170.70401 · doi:10.1007/s11071-008-9364-0
[9] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1, 1-18. · Zbl 1190.93038
[10] Sun, K., Liu, X., Zhu, C., Sprott, J. C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn. 69 (2012), 1383-1391.
[11] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 2, 359-374. · Zbl 1276.34043
[12] Effati, S., Nik, H. Saberi, Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn. 73 (2013), 499-508. · Zbl 1281.34111 · doi:10.1007/s11071-013-0804-0
[13] Effati, S., Saberi-Nadjafi, J., Nik, H. Saberi: Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Appl. Math. Modell. 38 (2014), 759-774. · Zbl 1449.37063 · doi:10.1016/j.apm.2013.06.025
[14] Nik, H. Saberi, Golchaman, M.: Chaos control of a bounded 4D chaotic system. Neural Comput. Appl. (2013).
[15] Yu, S., Lu, J., Yu, X., Chen, G.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. 59-I (2012), 5, 1015-1028. · doi:10.1109/TCSI.2011.2180429
[16] Lu, J., Yu, S., Leung, H., Chen, G.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Syst. 53 (2006), 1, 149-165. · doi:10.1109/TCSI.2005.854412
[17] Wang, Z. H., Sun, Y. X., Qi, G. Y., Wyk, B. J.: The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor. Nonlinear Dyn. 62 (2010), 139-150. · Zbl 1209.34060 · doi:10.1007/s11071-010-9705-7
[18] Cam, U.: A new high performance realization of mixed-mode chaotic circuit using current-feedback operational amplifiers. Comput. Electr. Engrg. 30 (2004), 4, 281-290. · Zbl 1057.94518 · doi:10.1016/j.compeleceng.2004.06.001
[19] Yu, S., Lü, J., Tang, W., Chen, G.: A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos 16 (2006), 033126. · Zbl 1151.94432 · doi:10.1063/1.2336739
[20] Pehlivan, I., Uyaroglu, Y.: Rikitake attractor and its synchronization application for secure communication systems. J. Appl. Sci. 7 (2007), 7, 232-236. · doi:10.3923/jas.2007.232.236
[21] Pehlivan, I., Uyaroglu, Y.: A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization. Comput. Electr. Engrg. 38 (2012), 6, 1777-1784. · doi:10.1016/j.compeleceng.2012.08.007
[22] Kirk, D. E.: Optimal Control Theory: An Introduction. Prentice-Hall, 1970.
[23] Zhong, W., Stefanovski, J., Dimirovski, G., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network. Kybernetika 45 (2009), 151-167. · Zbl 1158.34332
[24] Chen, Y., Lu, J., Lin, Z.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 6, 1768-1775. · Zbl 1360.93019 · doi:10.1016/j.automatica.2013.02.021
[25] Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846. · Zbl 1365.93406 · doi:10.1109/TAC.2005.849233
[26] Zhou, J., Lu, J., Lu, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44 (2008), 4, 996-1003. · Zbl 1158.93339 · doi:10.1016/j.automatica.2008.11.001
[27] He, P., Ma, S. H., Fan, T.: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos 22 (2012), 4, 043151. · Zbl 1319.34104 · doi:10.1063/1.4773005
[28] He, P., Jing, C. G., Fan, T., Chen, C. Z.: Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties. Complexity 19 (2014), 10-26. · doi:10.1002/cplx.21472
[29] He, P., Jing, C. G., Chen, C. Z., Fan, T., Nik, H. Saberi: Synchronization of general complex networks via adaptive control schemes. J. Phys. 82 (2014), 3, 499-514.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.