×

Robust explicit model predictive control via regular piecewise-affine approximation. (English) Zbl 1308.93070

Summary: This paper proposes an explicit model predictive control design approach for regulation of linear time-invariant systems subject to both state and control constraints, in the presence of additive disturbances. The proposed control law is implemented as a piecewise-affine function defined on a regular simplicial partition, and has two main positive features. First, the regularity of the simplicial partition allows one to efficiently implement the control law on digital circuits, thus achieving extremely fast computation times. Moreover, the asymptotic stability (or the convergence to a set including the origin) of the closed-loop system can be enforced a priori, rather than checked a posteriori via Lyapunov analysis.

MSC:

93B35 Sensitivity (robustness)
93B40 Computational methods in systems theory (MSC2010)
93B51 Design techniques (robust design, computer-aided design, etc.)
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory

Software:

PnPMPC; MOBY-DIC; MPT
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] DOI: 10.1016/S0005-1098(01)00174-1 · Zbl 0999.93018
[2] DOI: 10.1109/TAC.2011.2141410 · Zbl 1368.93356
[3] DOI: 10.1016/S0005-1098(99)00113-2 · Zbl 0935.93005
[4] Blanchini F., Set-theoretic methods in control (2008) · Zbl 1140.93001
[5] DOI: 10.1016/S0005-1098(01)00051-6 · Zbl 0984.93037
[6] DOI: 10.1002/rnc.1251 · Zbl 1284.93100
[7] Genuit B.A.G., IFAC World Congress (pp. 4540–4545) (2011)
[8] DOI: 10.1016/j.automatica.2005.04.016 · Zbl 1087.93047
[9] DOI: 10.1016/0024-3795(95)90006-3 · Zbl 0845.68067
[10] Herceg M., Proceedings of the European Control Conference (pp. 502–510) (2013)
[11] DOI: 10.1109/TAC.2010.2047437 · Zbl 1368.93172
[12] DOI: 10.1109/81.847875
[13] DOI: 10.1155/S1024123X98000866 · Zbl 0923.93005
[14] DOI: 10.1016/0005-1098(96)00063-5 · Zbl 0897.93023
[15] Kouramas K.I., IEEE Conference on Decision and Control (pp. 2296–2301) (2005)
[16] DOI: 10.1109/TAC.2011.2179428 · Zbl 1369.93344
[17] DOI: 10.1016/j.automatica.2011.08.023 · Zbl 1228.93106
[18] Lu L., IEEE Conference on Decision and Control (pp. 1227–1232) (2011)
[19] DOI: 10.1016/S0005-1098(97)00157-X · Zbl 0910.93052
[20] Oliveri A., IFAC Conference on Nonlinear Model Predictive Control (pp. 218–225) (2012)
[21] DOI: 10.1109/TAC.2013.2275667 · Zbl 1360.93400
[22] DOI: 10.1109/TIE.2011.2161064
[23] DOI: 10.1109/TAC.2005.843854 · Zbl 1365.93122
[24] Rawlings J.B., Model predictive control: Theory and design (2009)
[25] Richter S., IEEE Conference on Decision and Control pp 5223– (2011)
[26] Riverso S., PnPMPC Toolbox v. 0.9 – user manual. (2013)
[27] Rubagotti M., IFAC Symposium on Nonlinear MPC pp 119– (2012)
[28] DOI: 10.1109/TAC.2013.2293451
[29] DOI: 10.1109/TAC.2013.2251774 · Zbl 1369.93349
[30] Storace M., International Journal of Circuit Theory and Applications 37 pp 1– (2010)
[31] DOI: 10.1109/TCST.2009.2017934
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.