zbMATH — the first resource for mathematics

On the compositional analysis of fatty acids in pork. (English) Zbl 1303.62094
Summary: Fatty acid (FA) composition of pork is an important issue for the pig industry and consumers. Fatty acid composition is commonly described as the percentages of a set of FA relative to total FA and therefore should be statistically treated as compositional data. To our knowledge there is no reference in the literature where specific methods for compositional data analysis have been applied to analyze FA composition in meat quality research. The purposes of this study were (1) to present an overview of compositional data analysis techniques, (2) to apply them to the analysis of the FA composition of muscles and subcutaneous fat from 941 pigs as a case study, and (3) to discuss and interpret the results with respect to those obtained using standard techniques. Results from both approaches indicate that FA composition differed across tissues and muscles but also, for a given muscle, with the intramuscular fat content. It is concluded that FA composition in pork did not display enough variability to become critical for standard statistics, particularly if the individual FA parts remain the same across experiments. However, even in such case, compositional analysis may be useful to correctly interpret the correlation structure among FA.
62P12 Applications of statistics to environmental and related topics
Full Text: DOI
[1] Aitchison, J. (1982), ”The Statistical Analysis of Compositional Data” (with discussion), Journal of the Royal Statistical Society. Series B (Methodological), 44, 139–177. · Zbl 0491.62017
[2] – (1986), The Statistical Analysis of Compositional Data, London: Chapman and Hall Ltd. (Reprinted 2003 with additional material by The Blackburn Press). · Zbl 0688.62004
[3] Aitchison, J., and Egozcue, J. J. (2005), ”Compositional Data Analysis: Where Are We and Where Should Be Heading?” Mathematical Geology, 37, 829–850. · Zbl 1177.86017 · doi:10.1007/s11004-005-7383-7
[4] Aitchison, J., and Greenacre, M. (2002), ”Biplots of Compositional Data,” Journal of the Royal Statistical Society. Series C. Applied Statistics, 51, 375–392. · Zbl 1111.62300 · doi:10.1111/1467-9876.00275
[5] AOAC (1997), ”Supplement to AOAC Official Method 996.06: Fat (Total, Saturated, and Monounsaturated) in Foods Hydrolytic Extraction Gas Chromatographic Method,” in Official Methods of Analysis (16th ed.), Arlington: Association of Official Analytical Chemists.
[6] Bacon-Shone, J. (2011), ”A Short History of Compositional Data Analysis,” in Compositional Data Analysis: Theory and Applications, eds. V. Pawlowsky-Glahn and A. Buccianti, Chichester: Wiley.
[7] Bosch, L., Tor, M., Reixach, J., and Estany, J. (2009), ”Estimating Intramuscular Fat Content and Fatty Acid Composition in Live and Post-Mortem Samples in Pigs,” Meat Science, 82, 432–437. · doi:10.1016/j.meatsci.2009.02.013
[8] Bosch, L., Tor, M., Reixach, J., and Estany, J. (2012), ”Age-Related Changes in Intramuscular and Subcutaneous Fat Content and Composition in Growing Pigs Using Longitudinal Data,” Meat Science, 98, 358–363. · doi:10.1016/j.meatsci.2012.02.019
[9] Cameron, N. D., and Enser, M. B. (1991), ”Fatty Acid Composition of Lipid in Longissimus Dorsi Muscle of Duroc and British Landrace Pigs and Its Relationships With Eating Quality,” Meat Science, 29, 295–307. · doi:10.1016/0309-1740(91)90009-F
[10] Comas-Cufí, M., and Thió-Henestrosa, S. (2011a), ”CoDaPack 2.0: A Stand-Alone, Multi-Platform Compositional Software,” in CoDaWork’11: 4th International Workshop on Compositional Data Analysis, eds. J. J. Egozcue, R. Tolosana-Delgado, and M. I. Ortego, Sant Feliu de Guíxols, Spain.
[11] – (2011b), ”CoDaPack 2.0. Manual and Software, Version 2.01,” http://ima.udg.edu/CoDaPack/ .
[12] Cook, H. W., and McMaster, C. R. (2002), ”Fatty Acid Desaturation and Chain Elongation in Eukaryotes,” in Biochemistry of Lipids, Lipoproteins and Membranes (4th ed.), eds. D. E. Vance and J. E. Vance, New York: Elsevier.
[13] Daunis-i-Estadella, J., Barceló-Vidal, C., and Buccianti, A. (2006), ”Exploratory Compositional Data Analysis,” in Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society Special Publications, Vol. 264, eds. A. Buccianti, G. Mateu-Figueras, and V. Pawlowsky-Glahn, London, UK, pp. 161–174. · Zbl 1158.86333
[14] Daunis-i-Estadella, J., Thió-Henestrosa, S., and Mateu-Figueras, G. (2011), ”Including Supplementary Elements in a Compositional Biplot,” Computers & Geosciences, 37, 696–701. · doi:10.1016/j.cageo.2010.11.003
[15] De Smet, S., Raes, K., and Demeyer, D. (2004), ”Meat Fatty Acid Composition as Affected by Fatness and Genetic Factors: A Review,” Animal Research, 53, 81–98. · doi:10.1051/animres:2004003
[16] Duran-Montgé, P., Realini, C. E., Barroeta, A. C., Lizardo, R., and Esteve-Garcia, E. (2008), ”Tissue Fatty Acid Composition of Pigs Fed Different Fat Sources,” Animal, 2, 1753–1762. · doi:10.1017/S1751731108003169
[17] Egozcue, J. J., and Pawlowsky-Glahn, V. (2005), ”Groups of Parts and Their Balances in Compositional Data Analysis,” Mathematical Geology, 37, 795–828. · Zbl 1177.86018 · doi:10.1007/s11004-005-7381-9
[18] – (2011), ”Basic Concepts and Procedures,” in Compositional Data Analysis: Theory and Applications eds. V. Pawlowsky-Glahn and A. Buccianti, Chichester: Wiley.
[19] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C. (2003), ”Isometric Logratio Transformations for Compositional Data Analysis,” Mathematical Geology, 35, 279–300. · Zbl 1302.86024 · doi:10.1023/A:1023818214614
[20] Egozcue, J. J., Daunis-i-Estadella, J., Pawlowsky-Glahn, V., Hron, K., and Filzmoser, P. (2012), ”Simplicial Regression. The Normal Model,” Journal of Applied Probability and Statistics, 6, 87–108. · Zbl 06186205
[21] Filzmoser, P., and Hron, K. (2009), ”Correlation Analysis of Compositional Data,” Mathematical Geosciences, 41, 905–919. · Zbl 1178.86019 · doi:10.1007/s11004-008-9196-y
[22] Franco, I., Escamilla, M. C., García, J., Fontán, M. C. G., and Carballo, J. (2006), ”Fatty Acid Profile of the Fat from Celta Pig Breed Fattened Using a Traditional Feed: Effect of the Location in the Carcass,” Journal of Food Composition and Analysis, 19, 792–799. · doi:10.1016/j.jfca.2006.05.005
[23] Kloareg, M., Noblet, J., and van Milgen, J. (2007), ”Deposition of Dietary Fatty Acids, De Novo Synthesis and Anatomical Partitioning of Fatty Acids in Finishing Pigs,” British Journal of Nutrition, 97, 35–44. · doi:10.1017/S0007114507205793
[24] Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., and Wolk, A. (2004), ”Dietary Long-Chain n-3 Fatty Acids for the Prevention of Cancer: A Review of Potential Mechanisms,” The American Journal of Clinical Nutrition, 79, 935–945.
[25] Leseigneur-Meynier, A., and Gandemer, G. (1991), ”Lipid Composition of Pork Muscle in Relation to the Metabolic Type of the Fibres,” Meat Science, 29, 229–241. · doi:10.1016/0309-1740(91)90052-R
[26] Martín-Fernández, J. A., and Thió-Henestrosa, S. (2006), ”Rounded Zeros: Some Practical Aspects for Compositional Data,” in Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society Special Publications, Vol. 264, eds. A. Buccianti, G. Mateu-Figueras, and V. Pawlowsky-Glahn, London, UK, pp. 191–201.
[27] Ntawubizi, M., Colman, E., Janssens, S., Raes, K., Buys, N., and De Smet, S. (2010), ”Genetic Parameters for Intramuscular Fatty Acid Composition and Metabolism in Pigs,” Journal of Animal Science, 88, 1286–1294. · doi:10.2527/jas.2009-2355
[28] Palarea-Albaladejo, J., Martín-Fernández, J. A., and Gómez-García, J. (2007), ”A Parametric Approach for Dealing With Compositional Rounded Zeros,” Mathematical Geology, 39, 625–645. · Zbl 1130.86001 · doi:10.1007/s11004-007-9100-1
[29] Pawlowsky-Glahn, V., and Egozcue, J. J. (2006), ”Compositional Data and Their Analysis: An Introduction,” in Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society Special Publications, Vol. 264, eds. A. Buccianti, G. Mateu-Figueras, and V. Pawlowsky-Glahn, London, UK, pp. 1–10. · Zbl 1156.86308
[30] Pearson, K. (1987), ”Mathematical Contributions to the Theory of Evolution: On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs,” Proceedings of the Royal Society of London, 60, 489–498. · JFM 28.0209.02 · doi:10.1098/rspl.1896.0076
[31] Ros-Freixedes, R., Reixach, J., Tor, M., and Estany, J. (2012), ”Expected Genetic Response for Oleic Acid Content in Pork,” Journal of Animal Science, 90, 4230–4238. · doi:10.2527/jas.2011-5063
[32] Rule, D. C. (1997), ”Direct Transesterification of Total Fatty Acids of Adipose Tissue, and of Freeze-Dried Muscle and Liver With Boron-Trifluoride in Methanol,” Meat Science, 46, 23–32. · doi:10.1016/S0309-1740(97)00008-9
[33] Sanford, R. F., Pierson, C. T., and Crovelli, R. A. (1993), ”An Objective Replacement Method for Censored Geochemical Data,” Mathematical Geology, 25, 59–80. · doi:10.1007/BF00890676
[34] Schmid, A. (2010), ”The Role of Meat Fat in the Human Diet,” Critical Reviews in Food Science and Nutrition, 51, 50–66. · doi:10.1080/10408390903044636
[35] Sharma, N., Gandemer, G., and Goutefongea, R. (1987), ”Comparative Lipid Composition of Porcine Muscles at Different Anatomical Locations,” Meat Science, 19, 121–128. · doi:10.1016/0309-1740(87)90017-9
[36] Templ, M., Hron, K., and Filzmoser, P. (2011), ”robCompositions: Robust Estimation for Compositional Data. Manual and Package, Version 1.5.0,” http://cran.r-project.org/web/packages/robCompositions . · Zbl 1304.65033
[37] Thió-Henestrosa, S., and Martín-Fernández, J. A. (2005), ”Dealing With Compositional Data: The Freeware CoDaPack,” Mathematical Geology, 37, 773–793. · Zbl 1152.86312 · doi:10.1007/s11004-005-7379-3
[38] Tolosana-Delgado, R., and van der Boogaart, K. G. (2011), ”Linear Models with Compositions in R,” in Compositional Data Analysis: Theory and Applications, eds. V. Pawlowsky-Glahn and A. Buccianti, Chichester: Wiley. · Zbl 1158.86339
[39] Valsta, L. M., Tapanainen, H., and Männistö, S. (2005), ”Meat Fats in Nutrition,” Meat Science, 70, 525–530. · doi:10.1016/j.meatsci.2004.12.016
[40] van den Boogaart, K. G., Tolosana, R., and Bren, M. (2011), ”Compositions: Compositional Data Analysis. Manual and Package, Version 1.10-2,” http://www.stat.boogaart.de/compositions .
[41] Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., and Enser, M. (2003), ”Effects of Fatty Acids on Meat Quality: A Review,” Meat Science, 66, 21–32. · doi:10.1016/S0309-1740(03)00022-6
[42] Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., and Whittington, F. M. (2008), ”Fat Deposition, Fatty Acid Composition and Meat Quality: A Review,” Meat Science, 78, 343–358. · doi:10.1016/j.meatsci.2007.07.019
[43] Yang, K. X., Ma, J. W., Guo, Y. M., Guo, T. F., Zhao, Y. G., Ding, N. S., Betti, M., Plastow, G. S., and Huang, L. S. (2010), ”Correlations Between Fat Depot Traits and Fatty Acid Composition in Abdominal Subcutaneous Adipose Tissue and Longissimus Muscle: Results From a White Duroc \(\times\) Erhualian Intercross F2 Population,” Journal of Animal Science, 88, 3538–3545. · doi:10.2527/jas.2009-2602
[44] Zhang, S., Knight, T. J., Stalder, K. J., Goodwin, R. N., Lonergan, S. M., and Beitz, D. C. (2007), ”Effects of Breed, Sex, and Halothane Genotype on Fatty Acid Composition of Pork Longissimus Muscle,” Journal of Animal Science, 85, 583–591. · doi:10.2527/jas.2006-239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.