zbMATH — the first resource for mathematics

ANOVA for factors with ordered levels. (English) Zbl 1303.62069
Summary: In its simplest case, ANOVA can be seen as a generalization of the t-test for comparing the means of a continuous variable in more than two groups defined by the levels of a discrete covariate, a so-called factor. Testing is then typically done by using the standard F-test. Here, we consider the special but frequent case of factor levels that are ordered. We propose an alternative test using mixed models methodology. The new test often outperforms the standard F-test when factor levels are ordered. We illustrate the proposed testing procedure in simulation studies and three typical applications: nonparametric dose response analysis in agriculture, associations between rating scales and a continuous outcome, and testing differentially expressed genes with ordinal phenotypes.

62P12 Applications of statistics to environmental and related topics
Full Text: DOI
[1] Bacchetti, P. (1989), ”Additive Isotonic Models,” Journal of the American Statistical Association, 84, 289–294.
[2] Barlow, R., Bartholomew, D., Bremner, M., and Brunk, H. (1972), Statistical Inference Under Order Restrictions: Theory and Application of Isotonic Regression, London: Wiley. · Zbl 0246.62038
[3] Brodeur, G. M., Pritchard, J., Berthold, F., Carlsen, N. L., Castel, V., Castelberry, R. P., De Bernardi, B., Evans, A. E., Favrot, M., and Hedborg, F. (1993), ”Revisions of the International Criteria for Neuroblastoma Diagnosis, Staging, and Response to Treatment,” Journal of Clinical Oncology, 11, 1466–1477.
[4] Cieza, A., Ewert, T., Üstün, T. B., Chatterji, S., Kostanjsek, N., and Stucki, G. (2004a), ”Development of ICF Core Sets for Patients with Chronic Conditions,” Journal of Rehabilitation Medicine. Supplement, 44, 9–11.
[5] Cieza, A., Stucki, G., Weigl, M., Kullmann, L., Stoll, T., Kamen, L., Kostanjsek, N., and Walsh, N. (2004b), ”ICF Core Sets for Chronic Widespread Pain,” Journal of Rehabilitation Medicine. Supplement, 44, 63–68.
[6] Crainiceanu, C. M., and Ruppert, D. (2004), ”Likelihood Ratio Tests in Linear Mixed Models With One Variance Component,” Journal of the Royal Statistical Society, Series B, 66, 165–185. · Zbl 1061.62027
[7] Crainiceanu, C. M., Ruppert, D., and Vogelsang, T. J. (2003), ”Some Properties of Likelihood Ratio Tests in Linear Mixed Models,” Technical Report, available from http://www.orie.cornell.edu/\(\sim\)davidr/papers/zeroprobrev01.pdf .
[8] Crainiceanu, C. M., Ruppert, D., Claeskens, G., and Wand, M. P. (2005), ”Exact Likelihood Ratio Tests for Penalised Splines,” Biometrika, 92, 91–103. · Zbl 1068.62021
[9] Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. (2013), Regression: Models, Methods and Applications, New York: Springer. · Zbl 1276.62046
[10] Gertheiss, J. (2013), ”ordPens: Selection and/or Smoothing of Ordinal Predictors,” R package version 0.2-1.
[11] Gertheiss, J., and Oehrlein, F. (2011), ”Testing Relevance and Linearity of Ordinal Predictors,” Electronic Journal of Statistics, 5, 1935–1959. · Zbl 1329.62312
[12] Gertheiss, J., and Tutz, G. (2009), ”Penalized Regression With Ordinal Predictors,” International Statistical Review, 77, 345–365.
[13] Gertheiss, J., Hogger, S., Oberhauser, C., and Tutz, G. (2011), ”Selection of Ordinally Scaled Independent Variables With Applications to International Classification of Functioning Core Sets,” Journal of the Royal Statistical Society. Series C. Applied Statistics, 60, 377–395.
[14] Greven, S., Crainiceanu, C., Küchenhoff, H., and Peters, A. (2008), ”Restricted Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models,” Journal of Computational and Graphical Statistics, 17, 870–891.
[15] Harville, D. A. (1977), ”Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems,” Journal of the American Statistical Association, 72, 320–338. · Zbl 0373.62040
[16] Leha, A., Jung, K., and Beißbarth, T. (2013), ”Utilization of Ordinal Response Structures in Classification With High-Dimensional Expression Data,” in Proceedings of the German Conference on Bioinformatics 2013, GCB’13, Saarbrücken/Wadern, Wadern: Dagstuhl Publishing, pp. 90–100. · Zbl 1281.92032
[17] McHorney, C. A., Ware, J. E., and Raczek, A. E. (1993), ”The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and Clinical Tests of Validity in Measuring Physical and Mental Health Constructs,” Medical Care, 31, 247–263.
[18] Morrell, C. H. (1998), ”Likelihood Ratio Testing of Variance Components in the Linear Mixed-Effects Model Using Restricted Maximum Likelihood,” Biometrics, 54, 1560–1568. · Zbl 1058.62541
[19] Oberthuer, A., Berthold, F., Warnat, P., Hero, B., Kahlert, Y., Spitz, R., Ernestus, K., König, R., Haas, S., Eils, R., Schwab, M., Brors, B., Westermann, F., and Fischer, M. (2006), ”Customized Oligonucleotide Microarray Gene Expression-Based Classification of Neuroblastoma Patients Outperforms Current Clinical Risk Stratification,” Journal of Clinical Oncology, 24, 5070–5078.
[20] Pramana, S., Lin, D., Haldermans, P., Shkedy, Z., Verbeke, T., Göhlmann, H., De Bondt, A., Talloen, W., and Bijnens, L. (2010), ”IsoGene: An R Package for Analyzing Dose-Response Studies in Microarray Experiments,” The R Journal, 2, 5–12.
[21] R Core Team (2013), R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing.
[22] Rufibach, K. (2010), ”An Active Set Algorithm to Estimate Parameters in Generalized Linear Models with Ordered Predictors,” Computational Statistics & Data Analysis, 54, 1442–1456. · Zbl 1284.62466
[23] Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression, Cambridge: Cambridge University Press. · Zbl 1038.62042
[24] Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I., Farne, A., Hastings, E., Ison, J., Keays, M., Kurbatova, N., Malone, J., Mani, R., Mupo, A., Pedro Pereira, R., Pilicheva, E., Rung, J., Sharma, A., Tang, Y. A., Ternent, T., Tikhonov, A., Welter, D., Williams, E., Brazma, A., Parkinson, H., and Sarkans, U. (2012), ”ArrayExpress Update-Trends in Database Growth and Links in Data Analysis Tools,” Nucleic Acids Research, 41, D987–D990.
[25] Scheipl, F., and Bolker, B. (2013), ”RLRsim: Exact (Restricted) Likelihood Ratio Tests for Mixed and Additive Models,” R package version 2.0-12.
[26] Scheipl, F., Greven, S., and Küchenhoff, H. (2008), ”Size and Power of Tests for a Zero Random Effect Variance or Polynomial Regression in Additive and Linear Mixed Models,” Computational Statistics & Data Analysis, 52, 3283–3299. · Zbl 1452.62531
[27] Self, S. G., and Liang, K. Y. (1987), ”Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests Under Non-standard Conditions,” Journal of the American Statistical Association, 82, 605–610. · Zbl 0639.62020
[28] Stram, D. O., and Lee, J. W. (1994), ”Variance Components Testing in the Longitudinal Mixed Effects Model,” Biometrics, 50, 1171–1177. · Zbl 0826.62054
[29] Walter, S. D., Feinstein, A. R., and Wells, C. K. (1987), ”Coding Ordinal Independent Variables in Multiple Regression Analysis,” American Journal of Epidemiology, 125, 319–323.
[30] Ware, J. E., and Sherbourne, C. (1992), ”The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection,” Medical Care, 30, 473–483.
[31] WHO (2001), International Classification of Functioning, Disability and Health: ICF, Geneva: World Health Organization.
[32] Wood, S. N. (2011), ”Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models,” Journal of the Royal Statistical Society, Series B, 73, 3–36.
[33] Wright, K. (2012). ”agridat: Agricultural Datasets,” R package version 1.4.
[34] Yuan, M., and Lin, Y. (2006), ”Model Selection and Estimation in Regression with Grouped Variables,” Journal of the Royal Statistical Society, Series B, 68, 49–67. · Zbl 1141.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.