×

zbMATH — the first resource for mathematics

On cusps and flat tops. (Singularités et points critiques plats.) (English. French summary) Zbl 1361.37032
Summary: Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to \(C^{1 + \epsilon}\). The critical points are not required to verify a non-flatness condition, so the results are applicable to \(C^{1 + \epsilon}\) maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of M. Benedicks and M. Misiurewicz [Publ. Math., Inst. Hautes Étud. Sci. 69, 203–213 (1989; Zbl 0703.58030)].

MSC:
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37E05 Dynamical systems involving maps of the interval
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Araújo, Vítor; Luzzatto, Stefano; Viana, Marcelo, Invariant measures for interval maps with critical points and singularities, Adv. Math., 221, 5, 1428-1444, (2009) · Zbl 1184.37032
[2] Aspenberg, Magnus, Rational misiurewicz maps are rare, Comm. Math. Phys., 291, 3, 645-658, (2009) · Zbl 1185.37103
[3] Benedicks, Michael; Misiurewicz, Michał, Absolutely continuous invariant measures for maps with flat tops, Inst. Hautes Études Sci. Publ. Math., 69, 203-213, (1989) · Zbl 0703.58030
[4] Blokh, A. M.; Lyubich, M. Yu., Measurable dynamics of \(S\)-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4), 24, 5, 545-573, (1991) · Zbl 0790.58024
[5] Bruin, H., Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., 168, 3, 571-580, (1995) · Zbl 0827.58015
[6] Bruin, H.; Rivera-Letelier, J.; Shen, W.; van Strien, S., Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., 172, 3, 509-533, (2008) · Zbl 1138.37019
[7] Bruin, Henk; Shen, Weixiao; van Strien, Sebastian, Invariant measures exist without a growth condition, Comm. Math. Phys., 241, 2-3, 287-306, (2003) · Zbl 1098.37034
[8] Bruin, Henk; Todd, Mike, Equilibrium states for interval maps: the potential \(-t\log \vert Df\vert ,\) Ann. Sci. Éc. Norm. Supér. (4), 42, 4, 559-600, (2009) · Zbl 1192.37051
[9] Díaz-Ordaz, K.; Holland, M. P.; Luzzatto, S., Statistical properties of one-dimensional maps with critical points and singularities, Stoch. Dyn., 6, 4, 423-458, (2006) · Zbl 1130.37362
[10] Dobbs, Neil, Critical points, cusps and induced expansion in dimension one, (2006)
[11] Dobbs, Neil, Visible measures of maximal entropy in dimension one, Bull. Lond. Math. Soc., 39, 3, 366-376, (2007) · Zbl 1132.37017
[12] Dobbs, Neil, Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc., 364, 6, 2803-2824, (2012) · Zbl 1267.37042
[13] Dobbs, Neil; Skorulski, Bartłomiej, Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math., 198, 3, 283-287, (2008) · Zbl 1167.37024
[14] Graczyk, Jacek; Sands, Duncan; Świątek, Grzegorz, Metric attractors for smooth unimodal maps, Ann. of Math. (2), 159, 2, 725-740, (2004) · Zbl 1055.37041
[15] Hofbauer, Franz, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math., 34, 3, 213-237 (1980), (1979) · Zbl 0422.28015
[16] Hofbauer, Franz, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math., 38, 1-2, 107-115, (1981) · Zbl 0456.28006
[17] Hofbauer, Franz; Raith, Peter, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull., 35, 1, 84-98, (1992) · Zbl 0701.28005
[18] Hofbauer, Franz; Raith, Peter, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull., 35, 1, 84-98, (1992) · Zbl 0701.28005
[19] Keller, Gerhard, Lifting measures to Markov extensions, Monatsh. Math., 108, 2-3, 183-200, (1989) · Zbl 0712.28008
[20] Keller, Gerhard, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems, 10, 4, 717-744, (1990) · Zbl 0715.58020
[21] Ledrappier, François, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynamical Systems, 1, 1, 77-93, (1981) · Zbl 0487.28015
[22] Ledrappier, François, Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., 299, 1, 37-40, (1984) · Zbl 0567.58016
[23] Luzzatto, Stefano; Tucker, Warwick, Non-uniformly expanding dynamics in maps with singularities and criticalities, Inst. Hautes Études Sci. Publ. Math., 89, 179-226 (2000), (1999) · Zbl 0978.37029
[24] Martens, Marco, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems, 14, 2, 331-349, (1994) · Zbl 0809.58026
[25] de Melo, Welington; van Strien, Sebastian, One-dimensional dynamics, 25, xiv+605 pp., (1993), Springer-Verlag, Berlin · Zbl 0791.58003
[26] Newhouse, Sheldon E., Entropy and volume, Ergodic Theory Dynam. Systems, 8 *, Charles Conley Memorial Issue, 283-299, (1988) · Zbl 0638.58016
[27] Parry, William, Topics in ergodic theory, 75, x+110 pp., (1981), Cambridge University Press, Cambridge · Zbl 0449.28016
[28] Rohlin, V. A., Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2), 39, 1-36, (1964) · Zbl 0154.15703
[29] Ruelle, David, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9, 1, 83-87, (1978) · Zbl 0432.58013
[30] Rychlik, Marek, Bounded variation and invariant measures, Studia Math., 76, 1, 69-80, (1983) · Zbl 0575.28011
[31] Sands, Duncan, Misiurewicz maps are rare, Comm. Math. Phys., 197, 1, 109-129, (1998) · Zbl 0921.58015
[32] Stefano, Luzzatto; Marcelo, Viana, Positive Lyapunov exponents for Lorenz-like families with criticalities, 261, xiii, 201-237, (2000) · Zbl 0944.37025
[33] Thunberg, Hans, Positive exponent in families with flat critical point, Ergodic Theory Dynam. Systems, 19, 3, 767-807, (1999) · Zbl 0966.37011
[34] Zweimüller, Roland \(, S\)-unimodal misiurewicz maps with flat critical points, Fund. Math., 181, 1, 1-25, (2004) · Zbl 1065.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.