×

Holomorphic symmetries. (English) Zbl 0639.32015

Main results proved in this paper are the following: (1) A compact maximally complex \(C^ 1\)-class manifold M, \(\dim_{{\mathbb{R}}}M=2p-1\geq 3,\) with a transversal holomorphic \(S^ 1\)-action is realized as a real hypersurface in a p-dimensional affine algebraic variety with a linear \({\mathbb{C}}^*\)-action, if M is embedded in a Stein manifold. (2) Suppose that compact maximally complex smooth pseudoconvex manifolds \(M\), \(M'\), \(\dim_{{\mathbb{R}}}M=\dim_{{\mathbb{R}}}M'=\) \(2n-1\geq 3,\) with transversal holomorphic \(S^ 1\)-actions are embedded in \({\mathbb{C}}^{n+1}\) and have isomorphic Kohn-Rossi’s \({\bar \partial}_ b\)-cohomologies. Then there is a diffeomorphism \(f: {\mathbb{C}}^{n+1}\to {\mathbb{C}}^{n+1}\) such that \(f(M)=M'\). (3) Suppose that a compact complex space admits a holomorphic \(S^ 1\)-action. Then the Euler number of the fixed point set of the action is equal to that of the total space. To prove (1), first they show that the holomorphic \(S^ 1\)-action extends to a holomorphic semigroup action on \(Y\) which \(M\) bounds. Here the semigroup is the punctured unit disk in \(C\). The existence of \(Y\) is guaranteed by a result of F. R. Harvey and H. B. Lawsonjun. [Ann. Math., II. Ser. 102, 223-290 (1975; Zbl 0317.32017)]. Next they observe that this extended semigroup action induces a contracting holomorphic embedding of (the normalization of) \(Y\) into itself. From this observation (1) follows.
The proof of (2) is based on a previous result of one of the authors.
As an application of the result (3), they calculate the Euler characteristics of the Chow varieties of complex projective space. Moreover, for an arbitrary compact Kaehler manifold \(X\), they define a generating function whose coefficients are the Euler numbers of certain subsets of the Barlet space of X and show the rationality of the function by calculation in the cases \(X = P^ n\) and \(P^ m \times P^ n\).
In (1), the algebraicity of \(Y\), and hence of \(M\), in the sense of the paper under review, follows also from a reviewer’s result as a special case. See, Theorem 1 in J. Math. Soc. Japan 28, 550-576 (1976; Zbl 0323.32017) and the proof of Lemma 10 in Complex Anal., algebr. Geom., 191-206 (1977; Zbl 0354.32013).
Reviewer: M.Kato

MSC:

32J99 Compact analytic spaces

References:

[1] D. BARLET , Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie (Lecture Notes, No. 482, pp. 1-158, Springer Verlag). MR 53 #3347 | Zbl 0331.32008 · Zbl 0331.32008
[2] A. BIALYNICKI-BIRULA , Some Theorems on Actions of Algebraic Groups (Ann. of Math., Vol. 98, 1973 , pp. 480-497). MR 51 #3186 | Zbl 0275.14007 · Zbl 0275.14007 · doi:10.2307/1970915
[3] J. B. CARREL and D. I. LIEBERMAN , Holomorphic Vector Fields and Compact Köhler Manifolds (Inventiones Math., Vol. 21, 1973 , pp. 303-309). Zbl 0253.32017 · Zbl 0253.32017 · doi:10.1007/BF01418791
[4] J. B. CARRELL and A. J. SOMMESE , \Bbb C*-actions (Math. Scand., Vol. 43, 1978 , pp. 49-59). MR 80h:32053 | Zbl 0416.32022 · Zbl 0416.32022
[5] J. B. CARRELL and A. J. SOMMESE , Some Topological Aspects of \Bbb C*-actions on Compact Köhler Manifolds (Comm. Math. Helv., Vol. 54, 1979 , pp. 567-582). MR 80m:32032 | Zbl 0466.32015 · Zbl 0466.32015 · doi:10.1007/BF02566293
[6] T. FRANKEL , Fixed-Points and Torsion on Köhler Manifolds (Ann. of Math., Vol. 70, 1959 , pp. 1-8). MR 24 #A1730 | Zbl 0088.38002 · Zbl 0088.38002 · doi:10.2307/1969889
[7] R. GUNNING and H. ROSSI , Analytic Functions of Several Complex Variables , Prentice-Hall, Englewood Cliffs, N.J., 1965 . MR 31 #4927 | Zbl 0141.08601 · Zbl 0141.08601
[8] R. HARVEY and H. B. LAWSON , Jr. , On Boundaries of Complex Analytic Varieties, I (Ann. of Math., Vol. 102, 1975 , pp. 223-290). MR 54 #13130 | Zbl 0317.32017 · Zbl 0317.32017 · doi:10.2307/1971032
[9] H. HIRONAKA , Introduction to the Theory of Infinitely Near Singular Points (Memorias de Matematica del Instituto ”Jorge Juan”, Vol. 28, Madrid, 1974 ); H. HIRONAKA , Desingularization of a Complex Analytic Space , Preprint of Warwick University, 1970 ; J. M. AROCA , H. HIRONAKA and J. L. VINCENTE , The Theory of Maximal Contact (Memorias de Matematica del Instituto ”Jorge Juan”, Vol. 29, Madrid, 1975 ). · Zbl 0214.20003
[10] M. HIRSCH , Differential Topology , Springer-Vergag, N.Y., 1900 .
[11] J. J. KOHN and H. ROSSI , On the Extension of Holomorphic Functions from the Boundary of a Complex Manifold (Ann. of Math., Vol. 81, 1965 , pp. 451-472). MR 31 #1399 | Zbl 0166.33802 · Zbl 0166.33802 · doi:10.2307/1970624
[12] D. I. LIEBERMAN , Vector Fields on Projective Manifolds (Proc. of Symp. Pure Math., Vol. XXX, 1976 ).
[13] J. MATHER and STEPHEN S.-T. YAU , Classification of Isolated Hypersurface Singularities by Their Moduli Algebras (Inventines Math., Vol. 69, 1982 , pp. 243-251). MR 84c:32007 | Zbl 0499.32008 · Zbl 0499.32008 · doi:10.1007/BF01399504
[14] J. MILNOR , Singular Points of Complex Hypersurfaces (Ann. of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J., 1968 ). MR 39 #969 | Zbl 0184.48405 · Zbl 0184.48405
[15] K. SAITO , Quasihomogene isolierte Singularitaten von Hyperflöchen , (Inventiones Math., Vol. 14, 1971 , pp. 123-142). MR 45 #3767 | Zbl 0224.32011 · Zbl 0224.32011 · doi:10.1007/BF01405360
[16] A. SOMMESE , Extension Theorems for Reductive Group Actions on Compact Köhler Manifolds (Ann. of Math., Vol. 218, 1975 , pp. 107-116). MR 52 #14370 | Zbl 0299.32029 · Zbl 0299.32029 · doi:10.1007/BF01370814
[17] STEPHEN S.-T. YAU , Kohn-Rossi Cohomology and its Application to the Complex Plateau Problem, I (Ann. of Math. 113, 1981 , pp. 67-110). MR 82k:32038 | Zbl 0464.32012 · Zbl 0464.32012 · doi:10.2307/1971134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.