zbMATH — the first resource for mathematics

A limit case of the Hörmander multiplier theorem. (English) Zbl 0639.42012
Let m be a multiplier in \({\mathbb{R}}^ n \)satisfying \(\sup_{t>0}\| \phi m(t\cdot)\|_{B^ 2_{n/2,1}}<\infty,\) where \(B^ 2_{n/2,1}\) is a Besov-space, \(\phi\) a bump-function in (1/2,2). It follows from E. M. Stein’s proof [Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. 30 (1970; Zbl 0207.135)] of the Hörmander multiplier criterion, that the associated convolution operator \(T_ m\) is bounded on \(L^ p\), \(1<p<\infty\). We prove that \(T_ m: H^ 1\to L^{1r}\) is bounded (\(H^ 1\) Hardy-space, \(L^{1r}\) Lorentz-space). The result is almost sharp in the sense, that \(L^{1r}\) cannot be replaced by \(L^{1s}\), \(s<2\). Essentially used is a variant of Calderón-Zygmund-theory involving sequence-valued maximal-functions.
Reviewer: A.Seeger

42B15 Multipliers for harmonic analysis in several variables
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI EuDML
[1] [BS]Baernstein, A., Sawyer, E.T.: Embedding and Multiplier theorems forH p (? n ). Mem. Amer. Math. Soc.53, No. 318 (1985). · Zbl 0566.42013
[2] [Ca]Carbery, A.: Variants of the Calderón-Zygmund theory forL p -spaces. Preprint (1986).
[3] [Ch]Christ, M.: On almost-everywhere convergence of Bochner-Riesz-means in higher dimensions. Proc. Amer. Math. Soc.95, 16-20 (1985). · Zbl 0569.42011
[4] [CS]Connett, W. C., Schwartz, A. L.: The theory of ultraspherical multipliers. Mem. Amer. Math. Soc.9, No. 183 (1977). · Zbl 0367.42006
[5] [FRS]Fefferman, C., Rivière, N. M., Sagher, Y.: Interpolation betweenH p -spaces: The real method. Trans. Amer. Math. Soc.191, 75-81 (1974).
[6] [FS1]Fefferman, C., Stein, E. M.: Some maximal inequalities. Amer. J. Math.93, 107-115 (1971). · Zbl 0222.26019
[7] [FS2]Fefferman, C., Stein, E. M.:H p spaces of several variables. Acta Math.129, 137-193 (1972). · Zbl 0257.46078
[8] [H]Hörmander, L.: Estimates for translation invariant operators inL p spaces. Acta Math.104, 93-140 (1960). · Zbl 0093.11402
[9] [Hu]Hunt, R. A.: OnL(p,q) spaces. L’Enseignement Math.12, 249-276 (1966). · Zbl 0181.40301
[10] [Mi]Miyachi, A.: Notes on Fourier multipliers forH p , BMO and the Lipschitz spaces. J. Fac. Sci. Univ. Tokyo, Sect. IA Math.30, 221-242 (1983). · Zbl 0536.42015
[11] [Sa]Sagher, Y.: On analytic families of operators. Israel J. Math.7, 350-356 (1969). · Zbl 0211.16602
[12] [Sg]Seeger, A.: Some inequalities for singular convolution operators inL p spaces. Preprint (1986).
[13] [St]Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton: Univ. Press. 1970. · Zbl 0207.13501
[14] [U1]Uchiyama, A.: Characterization ofH p (? n ) in terms of generalized Littlewood-Paleyg-functions. Studia Math.81, 135-158 (1985).
[15] [U2]Uchiyama, A.: Extension of the Hardy-Littlewood-Fefferman-Stein inequality. Pac. J. Math.120, 229-255 (1985). · Zbl 0583.42009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.