Haeusler, Erich On the rate of convergence in the central limit theorem for martingales with discrete and continuous time. (English) Zbl 0639.60030 Ann. Probab. 16, No. 1, 275-299 (1988). Let \((X_ i)_{i\in {\mathbb{N}}}\) be a sequence of real-valued r.v. forming a square integrable martingale difference sequence with respect to the \(\sigma\)-fields \({\mathcal F}_ 0\subset {\mathcal F}_ 1\subset...\subset {\mathcal F}_ i\), i.e. \(X_ i\) is \({\mathcal F}_ i\)-measurable and \(E(X_ i| {\mathcal F}_{i-1})=0\). For \(S_ n=\sum^{n}_{i=1}X_ i\) and the normal d.f. \(\phi\), the author proves the following theorem: For any \(\delta >0\) there exists a finite constant \(C_{\delta}\) such that \[ \sup_{x\in {\mathbb{R}}}| P(S_ n\leq x)-\phi (x)| \leq C_{\delta}(L_{n,2\delta} + N_{n,2\delta})^{1/(3+2\delta)}, \] where \[ L_{n,2\delta}\equiv \sum^{n}_{i=1}E(| X_ i|^{2+2\delta}) \] and \[ N_{n,2\delta}\equiv E(| \sum^{n}_{i=1}E(X^ 2_ i| {\mathcal F}_{i-1})- 1|^{1+\delta}). \] This extends a result of C. C. Heyde and B. M. Brown, Ann. Math. Statistics 41, 2161-2165 (1970; Zbl 0225.60026), who proved this estimate for \(0<\delta \leq 1\). An example is constructed demonstrating that this bound is asymptotically exact for all \(\delta >0\). The result for discrete-time martingales is then used to derive the corresponding bound on the rate of convergence in the central limit theorem for locally square integrable martingales with continuous time. Reviewer: L.Hahn Cited in 3 ReviewsCited in 39 Documents MSC: 60F05 Central limit and other weak theorems 60G42 Martingales with discrete parameter 60G44 Martingales with continuous parameter Keywords:martingale difference sequence; rate of convergence in the central limit theorem; locally square integrable martingales Citations:Zbl 0225.60026 PDF BibTeX XML Cite \textit{E. Haeusler}, Ann. Probab. 16, No. 1, 275--299 (1988; Zbl 0639.60030) Full Text: DOI