He, Xinggang; Li, Haixiong On the \(abc\)-problem in Weyl-Heisenberg frames. (English) Zbl 1340.42073 Czech. Math. J. 64, No. 2, 447-458 (2014). Let \(a,b,c > 0\). Authors investigate the characterization problem which asks for a classification of all the triples \((a, b, c)\) such that the Weyl-Heisenberg system \[ \{e^{2\pi imbx} \times \chi_{[na,na+c)} : m, n \in \mathbb Z\} \] is a frame for \(L^2(\mathbb R^+)\). Without loss of generality it is possible to assume that \(b = 1\) and \(0 < a < 1\). It is slightly surprising that the classification of all \(a, c \in \mathbb R^+\) such that the \( (a, 1,c)\)-Weyl-Heisenberg system is a frame is a very difficult problem (called the \(abc\)-problem). In this paper, by virtue of the technique of Fourier analysis, the authors make some progress on this problem. Reviewer: S. F. Lukomskii (Saratov) Cited in 1 Document MSC: 42C15 General harmonic expansions, frames 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems Keywords:\(abc\)-problem; Weyl-Heisenberg frame; Zak transform × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] P. G. Casazza: Modern tools for Weyl-Heisenberg (Gabor) frame theory. Adv. Imag. Elec. Phys. 115 (2000), 1–127. · doi:10.1016/S1076-5670(01)80094-X [2] P. G. Casazza, N. J. Kalton: Roots of complex polynomials and Weyl-Heisenberg frame sets. Proc. Am. Math. Soc. 130 (2002), 2313–2318. · Zbl 0991.42023 · doi:10.1090/S0002-9939-02-06352-9 [3] K. Gröchenig, J. Stöckler: Gabor frames and totally positive functions. Duke Math. J. 162 (2013), 1003–1031. · Zbl 1277.42037 · doi:10.1215/00127094-2141944 [4] Q. Gu, D. Han: When a characteristic function generates a Gabor frame. Appl. Comput. Harmon. Anal. 24 (2008), 290–309. · Zbl 1242.42023 · doi:10.1016/j.acha.2007.06.005 [5] C. Heil: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13 (2007), 113–166. · Zbl 1133.42043 · doi:10.1007/s00041-006-6073-2 [6] A. J. E. M. Janssen: Some Weyl-Heisenberg frame bound calculations. Indag. Math., New Ser. 7 (1996), 165–183. · Zbl 1056.42512 · doi:10.1016/0019-3577(96)85088-9 [7] A. J. E. M. Janssen: Zak transforms with few zeros and the tie. Advances in Gabor Analysis (H. G. Feichtinger et al., eds.). Applied and Numerical Harmonic Analysis, Birkhäuser, Basel, 2003, pp. 31–70. · Zbl 1027.42025 [8] A. J. E. M. Janssen, T. Strohmer: Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal. 12 (2002), 259–267. · Zbl 1005.42021 · doi:10.1006/acha.2001.0376 [9] Y. I. Lyubarskij: Frames in the Bargmann space of entire functions. Entire and Subharmonic Functions. Advances in Soviet Mathematics 11, American Mathematical Society, Providence, 1992, pp. 167–180. · Zbl 0770.30025 [10] K. Seip: Density theorems for sampling and interpolation in the Bargmann-Fock space I. J. Reine Angew. Math. 429 (1992), 91–106. · Zbl 0745.46034 [11] K. Seip, R. Wallstén: Density theorems for sampling and interpolation in the Bargmann-Fock space II. J. Reine Angew. Math. 429 (1992), 107–113. · Zbl 0745.46033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.