×

Inhomogeneous parabolic Neumann problems. (English) Zbl 1349.35154

The author studies second order parabolic equations on Lipschitz domains subject to inhomogeneous Neumann (or, more generally Robin) boundary conditions \[ \begin{cases} u_t(t,x)-Au(t,x)= f(t,x) & t>0, \;x\in\Omega\\ {{\partial u(t,z)}\over{\partial \nu}}= g(t,z) & t>0, z\in \partial \Omega\\ u(0,x)=u_0(x) & x\in\Omega\,.\end{cases} \] Existence and uniqueness of weak solutions and their continuity up to the boundary of the parabolic cylinder are proved using methods from the theory of integrated semigroups, showing in particular the well-posedness of the abstract Cauchy problem in spaces of continuous functions. Under natural assumptions on the coefficients and the inhomogeneity the solutions are shown to converge to an equilibrium or to be asymptotically almost periodic.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
35B15 Almost and pseudo-almost periodic solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] W. Arendt: Resolvent positive operators and inhomogeneous boundary conditions. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 29 (2000), 639–670. · Zbl 1072.35077
[2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96, Birkhäuser, Basel, 2001. · Zbl 0978.34001
[3] W. Arendt, M. Chovanec: Dirichlet regularity and degenerate diffusion. Trans. Am. Math. Soc. 362 (2010), 5861–5878. · Zbl 1205.35139
[4] W. Arendt, R. Nittka: Equivalent complete norms and positivity. Arch. Math. 92 (2009), 414–427. · Zbl 1182.46006
[5] W. Arendt, R. Schätzle: Semigroups generated by elliptic operators in non-divergence form on C0({\(\Omega\)}). Ann. Sc. Norm. Super. Pisa, Cl. Sci. 13 (2014), 417–434. · Zbl 1327.35134
[6] H. Bohr: Almost Periodic Functions. Chelsea Publishing Company, New York, 1947. · Zbl 0005.20303
[7] D. M. Bošković, M. Krstić, W. Liu: Boundary control of an unstable heat equation via measurement of domain-averaged temperature. IEEE Trans. Autom. Control 46 (2001), 2022–2028. · Zbl 1006.93039
[8] P. Cannarsa, F. Gozzi, H. M. Soner: A dynamic programming approach to nonlinear boundary control problems of parabolic type. J. Funct. Anal. 117 (1993), 25–61. · Zbl 0823.49017
[9] R. Chapko, R. Kress, J. -R. Yoon: An inverse boundary value problem for the heat equation: the Neumann condition. Inverse Probl. 15 (1999), 1033–1046. · Zbl 1044.35527
[10] D. Daners: Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217 (2000), 13–41. · Zbl 0973.35087
[11] R. Dautray, J. -L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution Problems I. Springer, Berlin, 1992. · Zbl 0755.35001
[12] R. Denk, M. Hieber, J. Prüss: Optimal L p-L q-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257 (2007), 193–224. · Zbl 1210.35066
[13] G. Dore: L p regularity for abstract differential equations. Functional Analysis and Related Topics (H. Komatsu, ed.). Proc. Int. Conference, Kyoto University, 1991. Lect. Notes Math. 1540, Springer, Berlin, 1993, pp. 25–38. · Zbl 0818.47044
[14] K. -J. Engel: The Laplacian on C( $$\(\backslash\)overline \(\backslash\)Omega $$ ) with generalized Wentzell boundary conditions. Arch. Math. 81 (2003), 548–558. · Zbl 1064.47043
[15] K. -J. Engel, R. Nagel: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194, Springer, Berlin, 2000. · Zbl 0952.47036
[16] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed. Classics in Mathematics, Springer, Berlin, 2001. · Zbl 1042.35002
[17] J. A. Griepentrog: Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007), 1031–1078. · Zbl 1157.35023
[18] R. Haller-Dintelmann, J. Rehberg: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Equations 247 (2009), 1354–1396. · Zbl 1178.35210
[19] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva: Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical Monographs 23, American Mathematical Society, Providence, 1968.
[20] G. M. Lieberman: Second Order Parabolic Differential Equations. World Scientific, Singapore, 1996. · Zbl 0884.35001
[21] J. -L. Lions, E. Magenes: Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Die Grundlehren der mathematischenWissenschaften, Band 182, Springer, Berlin, 1972.
[22] R. Nittka: Quasilinear elliptic and parabolic Robin problems on Lipschitz domains. NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1125–1155. · Zbl 1268.35021
[23] R. Nittka: Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differ. Equations 251 (2011), 860–880. · Zbl 1225.35077
[24] R. Nittka: Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. PhD Thesis, University of Ulm, 2010.
[25] W. Stepanoff: Über einige Verallgemeinerungen der fast periodischen Funktionen. Math. Ann. 95 (1926), 473–498. (In German.) · JFM 52.0262.01
[26] M. Warma: The Robin andWentzell-Robin Laplacians on Lipschitz domains. Semigroup Forum 73 (2006), 10–30. · Zbl 1168.35340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.